Jump to content

SI derived unit: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
started turning units to <math>
Line 23: Line 23:
<td>[[hertz]]</td>
<td>[[hertz]]</td>
<td>Hz</td>
<td>Hz</td>
<td>s<sup>-1</sup></td>
<td><math>1/\mbox{s}</math></td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
</tr>
Line 31: Line 31:
<td>[[newton]]</td>
<td>[[newton]]</td>
<td>N</td>
<td>N</td>
<td><math>\frac{\mbox{kg}\cdot\mbox{m}}{\mbox{s}^2}</math></td>
<td>m&middot;kg&middot;s<sup>-2</sup></td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
</tr>
Line 39: Line 39:
<td>[[pascal]]</td>
<td>[[pascal]]</td>
<td>Pa</td>
<td>Pa</td>
<td>N&middot;m<sup>-2</sup> </td>
<td><math>\mbox{N}/\mbox{m}^2</math></td>
<td><math>= \frac{\mbox{kg}}{\mbox{m}\cdot\mbox{s}^2}</math></td>
<td>= m<sup>-1</sup>&middot;kg&middot;s<sup>-2</sup></td>
</tr>
</tr>


Line 48: Line 48:
<td>J</td>
<td>J</td>
<td>N&middot;m</td>
<td>N&middot;m</td>
<td><math>= \frac{\mbox{kg}\cdot\mbox{m}^2}{\mbox{s}^2}</math></td>
<td>= m<sup>2</sup>&middot;kg&middot;s<sup>-2</sup></td>
</tr>
</tr>



Revision as of 21:34, 21 May 2003


SI derived units are part of the SI system of measurement units and are derived from the seven SI base units.

Physical quantity Name of SI unit Symbol for SI unit Expression in terms of SI base units
Special names and Symbols
frequency hertz Hz  
force newton N  
pressure, stress pascal Pa
energy, work, heat joule J N·m
power, radiant flux watt W J·s-1 = m2·kg·s-3
electric charge coulomb C A·s  
electric potential, electromotive force volt V J·C-1 = m2·kg·s-3·A-1
electrical resistance ohm Ω V·A-1 = m2·kg·s-3·A-2
electric conductance siemens S A·V-1 =

m-2·kg-1·s3·A

2
electric capacitance farad F C·V-1 =

m-2·kg-1·s4·A

2
magnetic flux density, magnetic inductivity tesla T V·s·m-2 = kg·s-2·A-1
magnetic flux weber Wb V·s = m2·kg·s-2·A-1
inductance henry H V·A-1·s = m2·kg·s-2·A-2
temperature degree Celsius °C K  
plane angle radian rad 1 = m·m-1
solid angle steradian sr 1 = m2·m-2
luminous flux lumen lm cd·sr  
illuminance lux lx cd·sr·m-2  
activity (radioactive) becquerel Bq s-1  
absorbed dose (of radiation) gray Gy J·kg-1 = m2·s-2
dose equivalent (dose equivalent index) sievert Sv J·kg-1 = m2·s-2
catalytic activity katal kat mol·s-1  
Other Quantities
area     m2  
volume     m3  
speed, velocity     m·s-1  
angular velocity     s-1, rad·s-1  
acceleration     m·s-2  
moment of force     N·m = m2·kg·s-2
wavenumber     m-1  
density, mass density     kg·m-3  
specific volume     m3·kg-1  
amount (-of-substance) concentration     mol·m-3  
molar volume     m3·mol-1  
heat capacity, entropy     J·K-1 = m2·kg·s-2·K-1
molar heat capacity, molar entropy     J·K-1·mol-1 = m2·kg·s-2·K-1·mol-1
specific heat capacity, specific entropy     J·K-1·kg-1 = m2·s-2·K-1
molar energy     J·mol-1 = m2·kg·s-2·mol-1
specific energy     J·kg-1 = m2·s-2
energy density     J·m-3 = m-1·kg·s-2
surface tension     N·m-1=J·m-2 = kg·s-2
heat flux density, irradiance     W·m-2 = kg·s-3
thermal conductivity     W·m-1·K-1 = m·kg·s-3·K-1
kinematic viscosity, diffusion coefficient     m2·s-1  
dynamic viscosity     N·s·m-2 = Pa·s = m-1·kg·s-1
electric charge density     C·m-3 m-3·s·A
electric current density     A·m-2  
conductivity     S·m-1 =

m-3·kg-1·s3·A

2
molar conductivity     S·m2·mol-1 =

kg-1·mol-1·s3·A

2
permittivity     F·m-1 =

m-3·kg-1·s4·A

2;
permeability     H·m-1 = m·kg·s-2·A-2
electric field strength     V·m-1 = m·kg·s-3·A-1
magnetic field strength     A·m-1  
luminance     cd·m-2  
exposure (X and gamma rays)     C·kg-1 = kg-1·s·A
absorbed dose rate     Gy·s-1 = m2·s-3

References:

  • I. Mills, Tomislav Cvitas, Klaus Homann, Nikola Kallay, IUPAC: Quantities, Units and Symbols in Physical Chemistry, 2nd edition (June 1993), Blackwell Science Inc (p. 72)