Optical computer: Difference between revisions
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
In light of this (so to speak), no true optical computers yet exist. The problems of design seem to stem from eliminating the conversion from photons to electrons and back. This conversion is necessary now because we don't have all-optical versions of all the myriad switching devices required by a computer. |
In light of this (so to speak), no true optical computers yet exist. The problems of design seem to stem from eliminating the conversion from photons to electrons and back. This conversion is necessary now because we don't have all-optical versions of all the myriad switching devices required by a computer. |
||
*An interesting property of optical computers, optical pathways- is they can carry many different frequencies of [[light]] over each pathway(s) and the light detector(s) can be filtered to respond to each of those frequencies, depending on the flexibly programmed [[topology]] used. Very Large [[arrays]] [[VLA]]'s (4 Mpixels and above) can be fabricated like large optical arrays, each passing, switching or filtering each of the various frequency [[laser]] beams. |
*An interesting property of optical computers, optical pathways- is they can carry many different frequencies of [[light]] over each pathway(s) and the light detector(s) can be filtered to respond to each of those frequencies, depending on the flexibly programmed [[topology]] used. Very Large [[arrays]] ([[VLA]]'s) (4 Mpixels and above) can be fabricated like large optical arrays, each passing, switching or filtering each of the various frequency [[laser]] beams. |
||
*[[Itteration]] can be accomplished by feedback, as in gate arrays, where the output is fed into different inputs to provide greater programmed logic combinations. Light pathways can exist in many layers of adjacent silicon by total internal light guide [[reflection]] as in [[fiber optics]], except reflection of the beams are in many parallel vertical and horizontal [[lightguide pathways]] in the bulk silicon substrate, created by [[AutoCAD]] like step and repeat programmed layout [[wafer fabrication]] lightguide pathways. |
*[[Itteration]] can be accomplished by feedback, as in gate arrays, where the output is fed into different inputs to provide greater programmed logic combinations. Light pathways can exist in many layers of adjacent silicon by total internal light guide [[reflection]] as in [[fiber optics]], except reflection of the beams are in many parallel vertical and horizontal [[lightguide pathways]] in the bulk silicon substrate, created by [[AutoCAD]] like step and repeat programmed layout [[wafer fabrication]] lightguide pathways. |
||
*[[Crossover switch]]es are used to switch the light beam onto a new light pathway, can be accomplished by optical [[banyan switch]]es, using [[Non-linear optics]] or [[MEMS]] mirrors to steer a light beam onto or off of its intended path. These are used currently in optical switches for fiber optics. A 2000 x 2000 switch can be used for 4 million pathways, with 4 Mpixel CCDs used as the light detector(s) as in [[digital |
*[[Crossover switch]]es are used to switch the light beam onto a new light pathway, can be accomplished by optical [[banyan switch]]es, using [[Non-linear optics]] or [[MEMS]] mirrors to steer a light beam onto or off of its intended path. These are used currently in optical switches for fiber optics. A 2000 x 2000 switch can be used for 4 million pathways, with 4 Mpixel CCDs used as the light detector(s) as in [[digital camera]]s, to convert the [[binary]](on-off light) back into the electrical from the photonic realm. Silicon Dioxide is glass like and is transparent to lasers. The input(s) is/are a very large array of [[VCSEL]]s lasers. |
||
*Beam-splitters and mirrors move the light up/down or left/right in the array by silicon being placed at 45 degree angles like these symbols left or up"/" or right or down "\" or straight through "-" or reflecting "|". Periscopes use these same principle, only these are very large microminiture stacked arrays on silicon substrate, using a few more microns of depth for the additional array layouts. Putting a combination of these pathways in stacked interconnected multi-layer VLArrays, with banyan switches (to re-program any one pathway onto another) at the output or CCD detector, before being fedback into the optical inputs, allows greater programming combinoral possibilities, and general programming schemes to be employed in a massively parallel optical computer. refs: SAI1992, OAO, SPIE, Photonics Magazine. |
*Beam-splitters and mirrors move the light up/down or left/right in the array by silicon being placed at 45 degree angles like these symbols left or up"/" or right or down "\" or straight through "-" or reflecting "|". Periscopes use these same principle, only these are very large microminiture stacked arrays on silicon substrate, using a few more microns of depth for the additional array layouts. Putting a combination of these pathways in stacked interconnected multi-layer VLArrays, with banyan switches (to re-program any one pathway onto another) at the output or CCD detector, before being fedback into the optical inputs, allows greater programming combinoral possibilities, and general programming schemes to be employed in a massively parallel optical computer. refs: SAI1992, OAO, SPIE, Photonics Magazine. |
Revision as of 14:08, 23 January 2005
An Optical Computer is a computer that performs its computation with photons as opposed to the more traditional electron-based computation. Optical computing is a major branch of the study of Photonics. Electronics computations sometimes involve communications via photonic pathways. Popular devices of this class include FDDI interfaces. In order to send the information via photons, electronic signals are converted via lasers and the light guided down the optical fiber. The conversion process between electronic signal and photonic one takes time and adds complexity to the device.
No true optical computers are declassified or otherwise known to exist. Some devices that are best classified as switches have been tested in the laboratory. However, transistors that are composed entirely of optical components, if they exist, are currently only in the development stage.
A fully functional computer is composed of many transistors. The number of them required to constitute a computer is arguable, but probably at least 10 and more often 106 transistors are required to do general computing tasks.
In light of this (so to speak), no true optical computers yet exist. The problems of design seem to stem from eliminating the conversion from photons to electrons and back. This conversion is necessary now because we don't have all-optical versions of all the myriad switching devices required by a computer.
- An interesting property of optical computers, optical pathways- is they can carry many different frequencies of light over each pathway(s) and the light detector(s) can be filtered to respond to each of those frequencies, depending on the flexibly programmed topology used. Very Large arrays (VLA's) (4 Mpixels and above) can be fabricated like large optical arrays, each passing, switching or filtering each of the various frequency laser beams.
- Itteration can be accomplished by feedback, as in gate arrays, where the output is fed into different inputs to provide greater programmed logic combinations. Light pathways can exist in many layers of adjacent silicon by total internal light guide reflection as in fiber optics, except reflection of the beams are in many parallel vertical and horizontal lightguide pathways in the bulk silicon substrate, created by AutoCAD like step and repeat programmed layout wafer fabrication lightguide pathways.
- Crossover switches are used to switch the light beam onto a new light pathway, can be accomplished by optical banyan switches, using Non-linear optics or MEMS mirrors to steer a light beam onto or off of its intended path. These are used currently in optical switches for fiber optics. A 2000 x 2000 switch can be used for 4 million pathways, with 4 Mpixel CCDs used as the light detector(s) as in digital cameras, to convert the binary(on-off light) back into the electrical from the photonic realm. Silicon Dioxide is glass like and is transparent to lasers. The input(s) is/are a very large array of VCSELs lasers.
- Beam-splitters and mirrors move the light up/down or left/right in the array by silicon being placed at 45 degree angles like these symbols left or up"/" or right or down "\" or straight through "-" or reflecting "|". Periscopes use these same principle, only these are very large microminiture stacked arrays on silicon substrate, using a few more microns of depth for the additional array layouts. Putting a combination of these pathways in stacked interconnected multi-layer VLArrays, with banyan switches (to re-program any one pathway onto another) at the output or CCD detector, before being fedback into the optical inputs, allows greater programming combinoral possibilities, and general programming schemes to be employed in a massively parallel optical computer. refs: SAI1992, OAO, SPIE, Photonics Magazine.
- The future of computing is leaning towards large parallel arrays using photonics, rather than electronics, but will probably be for all practical purposes, be opto-electronic in nature, due to the current realm of electronic computing prevelence of using representitive voltages "0" or "1" voltage. Optical computing uses a direct analogy of presence or absence of the recognized signal medium, many laser frequencies on a single optical pathway. Multiplexing many frequencies of laser light onto and De-multiplexing off of an optical pathway are common place in DWDM fiber optics for long haul data transfers between cities at 10-40 Gbits/sec.
Interestingly, modern (normal) electronic computers are getting closer to being optical in any case. The frequency of the system clocks on fast systems has passed the single gigahertz range. As part of circuit design, any electronic signal varying that fast is giving off radio waves at that frequency. This means that a wire in a computer has a dual function as a conductor of electricity and as a waveguide for a gigahertz frequency radio wave.