Log-Cauchy distribution: Difference between revisions
Tom.Reding (talk | contribs) m Category:CS1 errors: deprecated parameters: migrate 3 |dead-url= to |url-status=; minor cleanup; WP:GenFixes on |
Bluelink 5 books for verifiability (prndis)) #IABot (v2.0.1) (GreenC bot |
||
Line 34: | Line 34: | ||
\end{align}</math> |
\end{align}</math> |
||
where <math> \mu</math> is a [[real number]] and <math> \sigma >0</math>.<ref name=robust>{{cite web|title=Applied Robust Statistics|url=http://www.math.siu.edu/olive/run.pdf|author=Olive, D.J.|date=June 23, 2008|publisher=Southern Illinois University|page=86|accessdate=2011-10-18|url-status=dead|archive-url=https://web.archive.org/web/20110928191222/http://www.math.siu.edu/olive/run.pdf|archive-date=September 28, 2011|df=}}</ref><ref name=stochastic>{{cite book|title=Statistical analysis of stochastic processes in time|author=Lindsey, J.K.|pages=33, 50, 56, 62, 145|year=2004|publisher=Cambridge University Press|isbn=978-0-521-83741-5}}</ref> If <math>\sigma</math> is known, the [[scale parameter]] is <math>e^{\mu}</math>.<ref name=robust/> <math> \mu</math> and <math> \sigma</math> correspond to the [[location parameter]] and [[scale parameter]] of the associated Cauchy distribution.<ref name=robust/><ref name=hiv>{{cite book|title=Stochastic processes in epidemiology: HIV/AIDS, other infectious diseases|author1=Mode, C.J. |author2=Sleeman, C.K. |lastauthoramp=yes |pages= |
where <math> \mu</math> is a [[real number]] and <math> \sigma >0</math>.<ref name=robust>{{cite web|title=Applied Robust Statistics|url=http://www.math.siu.edu/olive/run.pdf|author=Olive, D.J.|date=June 23, 2008|publisher=Southern Illinois University|page=86|accessdate=2011-10-18|url-status=dead|archive-url=https://web.archive.org/web/20110928191222/http://www.math.siu.edu/olive/run.pdf|archive-date=September 28, 2011|df=}}</ref><ref name=stochastic>{{cite book|title=Statistical analysis of stochastic processes in time|url=https://archive.org/details/statisticalanaly00lind|url-access=limited|author=Lindsey, J.K.|pages=[https://archive.org/details/statisticalanaly00lind/page/n48 33], 50, 56, 62, 145|year=2004|publisher=Cambridge University Press|isbn=978-0-521-83741-5}}</ref> If <math>\sigma</math> is known, the [[scale parameter]] is <math>e^{\mu}</math>.<ref name=robust/> <math> \mu</math> and <math> \sigma</math> correspond to the [[location parameter]] and [[scale parameter]] of the associated Cauchy distribution.<ref name=robust/><ref name=hiv>{{cite book|title=Stochastic processes in epidemiology: HIV/AIDS, other infectious diseases|url=https://archive.org/details/stochasticproces00mode|url-access=limited|author1=Mode, C.J. |author2=Sleeman, C.K. |lastauthoramp=yes |pages=[https://archive.org/details/stochasticproces00mode/page/n51 29]–37|year=2000|publisher=World Scientific|isbn=978-981-02-4097-4}}</ref> Some authors define <math> \mu</math> and <math> \sigma</math> as the [[location parameter|location]] and scale parameters, respectively, of the log-Cauchy distribution.<ref name=hiv/> |
||
For <math>\mu = 0</math> and <math>\sigma =1</math>, corresponding to a standard Cauchy distribution, the probability density function reduces to:<ref name=life/> |
For <math>\mu = 0</math> and <math>\sigma =1</math>, corresponding to a standard Cauchy distribution, the probability density function reduces to:<ref name=life/> |
||
Line 56: | Line 56: | ||
==Properties== |
==Properties== |
||
The log-Cauchy distribution is an example of a [[heavy-tailed distribution]].<ref name=small>{{cite book|title=Laws of Small Numbers: Extremes and Rare Events|author=Falk, M.|author2=Hüsler, J.|author3=Reiss, R.|last-author-amp=yes|page=80|year=2010|publisher=Springer|isbn=978-3-0348-0008-2}}</ref> Some authors regard it as a "super-heavy tailed" distribution, because it has a heavier tail than a [[Pareto distribution]]-type heavy tail, i.e., it has a [[logarithmic growth|logarithmically decaying]] tail.<ref name=small/><ref>{{cite web |
The log-Cauchy distribution is an example of a [[heavy-tailed distribution]].<ref name=small>{{cite book|title=Laws of Small Numbers: Extremes and Rare Events|url=https://archive.org/details/lawssmallnumbers00falk|url-access=limited|author=Falk, M.|author2=Hüsler, J.|author3=Reiss, R.|last-author-amp=yes|page=[https://archive.org/details/lawssmallnumbers00falk/page/n96 80]|year=2010|publisher=Springer|isbn=978-3-0348-0008-2}}</ref> Some authors regard it as a "super-heavy tailed" distribution, because it has a heavier tail than a [[Pareto distribution]]-type heavy tail, i.e., it has a [[logarithmic growth|logarithmically decaying]] tail.<ref name=small/><ref>{{cite web |
||
|title=Statistical inference for heavy and super-heavy tailed distributions |
|title=Statistical inference for heavy and super-heavy tailed distributions |
||
|url=http://docentes.deio.fc.ul.pt/fragaalves/SuperHeavy.pdf |
|url=http://docentes.deio.fc.ul.pt/fragaalves/SuperHeavy.pdf |
||
Line 67: | Line 67: | ||
|last-author-amp=yes |
|last-author-amp=yes |
||
|date=March 10, 2006 |
|date=March 10, 2006 |
||
}}</ref> As with the Cauchy distribution, none of the non-trivial [[moment (mathematics)|moments]] of the log-Cauchy distribution are finite.<ref name=life>{{cite book|title=Life distributions: structure of nonparametric, semiparametric, and parametric families|author1=Marshall, A.W. |author2=Olkin, I. |lastauthoramp=yes |pages= |
}}</ref> As with the Cauchy distribution, none of the non-trivial [[moment (mathematics)|moments]] of the log-Cauchy distribution are finite.<ref name=life>{{cite book|title=Life distributions: structure of nonparametric, semiparametric, and parametric families|url=https://archive.org/details/lifedistribution00mars|url-access=limited|author1=Marshall, A.W. |author2=Olkin, I. |lastauthoramp=yes |pages=[https://archive.org/details/lifedistribution00mars/page/n451 443]–444|year=2007|publisher=Springer|isbn=978-0-387-20333-1}}</ref> The [[mean]] is a moment so the log-Cauchy distribution does not have a defined mean or [[standard deviation]].<ref>{{cite web|title=Moment|url=http://mathworld.wolfram.com/Moment.html|publisher=[[Mathworld]]|accessdate=2011-10-19}}</ref><ref>{{cite journal|title=Trade, Human Capital and Technology Spillovers: An Industry Level Analysis|author=Wang, Y.|page=14|publisher=Carleton University}}</ref> |
||
The log-Cauchy distribution is [[Infinite divisibility (probability)|infinitely divisible]] for some parameters but not for others.<ref>{{cite journal|title=On the Lévy Measure of the Lognormal and LogCauchy Distributions|url=http://resources.metapress.com/pdf-preview.axd?code=gn16hw202rxh4q1g&size=largest|accessdate=2011-10-18|author=Bondesson, L.|journal=Methodology and Computing in Applied Probability|year=2003|pages=243–256|url-status=dead|archive-url=https://web.archive.org/web/20120425064706/http://resources.metapress.com/pdf-preview.axd?code=gn16hw202rxh4q1g&size=largest|archive-date=2012-04-25|df=}}</ref> Like the [[lognormal distribution]], [[log-t distribution|log-t or log-Student distribution]] and [[Weibull distribution]], the log-Cauchy distribution is a special case of the [[Generalized beta distribution#Generalized beta of the second kind .28GB2.29|generalized beta distribution of the second kind]].<ref>{{cite book|title=Return distributions in finance|author1=Knight, J. |author2=Satchell, S. |lastauthoramp=yes |page=153|year=2001|publisher=Butterworth-Heinemann|isbn=978-0-7506-4751-9}}</ref><ref>{{cite book|title=Market consistency: model calibration in imperfect markets|author=Kemp, M.|page=|year=2009|publisher=Wiley|isbn=978-0-470-77088-7}}</ref> The log-Cauchy is actually a special case of the log-t distribution, similar to the Cauchy distribution being a special case of the [[Student's t distribution]] with 1 degree of freedom.<ref>{{cite book|title=Statistical distributions in scientific work: proceedings of the NATO Advanced Study Institute|author=MacDonald, J.B.|chapter=Measuring Income Inequality|page=169|editor=Taillie, C. |editor2=Patil, G.P. |editor3=Baldessari, B.|year=1981|publisher=Springer|isbn=978-90-277-1334-6}}</ref><ref name=kleiber>{{cite book|title=Statistical Size Distributions in Economics and Actuarial Science|author1=Kleiber, C. |author2=Kotz, S. |lastauthoramp=yes |pages=101–102, 110|year=2003|publisher=Wiley|isbn=978-0-471-15064-0}}</ref> |
The log-Cauchy distribution is [[Infinite divisibility (probability)|infinitely divisible]] for some parameters but not for others.<ref>{{cite journal|title=On the Lévy Measure of the Lognormal and LogCauchy Distributions|url=http://resources.metapress.com/pdf-preview.axd?code=gn16hw202rxh4q1g&size=largest|accessdate=2011-10-18|author=Bondesson, L.|journal=Methodology and Computing in Applied Probability|year=2003|pages=243–256|url-status=dead|archive-url=https://web.archive.org/web/20120425064706/http://resources.metapress.com/pdf-preview.axd?code=gn16hw202rxh4q1g&size=largest|archive-date=2012-04-25|df=}}</ref> Like the [[lognormal distribution]], [[log-t distribution|log-t or log-Student distribution]] and [[Weibull distribution]], the log-Cauchy distribution is a special case of the [[Generalized beta distribution#Generalized beta of the second kind .28GB2.29|generalized beta distribution of the second kind]].<ref>{{cite book|title=Return distributions in finance|url=https://archive.org/details/returndistributi00satc_172|url-access=limited|author1=Knight, J. |author2=Satchell, S. |lastauthoramp=yes |page=[https://archive.org/details/returndistributi00satc_172/page/n167 153]|year=2001|publisher=Butterworth-Heinemann|isbn=978-0-7506-4751-9}}</ref><ref>{{cite book|title=Market consistency: model calibration in imperfect markets|author=Kemp, M.|page=|year=2009|publisher=Wiley|isbn=978-0-470-77088-7}}</ref> The log-Cauchy is actually a special case of the log-t distribution, similar to the Cauchy distribution being a special case of the [[Student's t distribution]] with 1 degree of freedom.<ref>{{cite book|title=Statistical distributions in scientific work: proceedings of the NATO Advanced Study Institute|author=MacDonald, J.B.|chapter=Measuring Income Inequality|page=169|editor=Taillie, C. |editor2=Patil, G.P. |editor3=Baldessari, B.|year=1981|publisher=Springer|isbn=978-90-277-1334-6}}</ref><ref name=kleiber>{{cite book|title=Statistical Size Distributions in Economics and Actuarial Science|author1=Kleiber, C. |author2=Kotz, S. |lastauthoramp=yes |pages=101–102, 110|year=2003|publisher=Wiley|isbn=978-0-471-15064-0}}</ref> |
||
Since the Cauchy distribution is a [[stable distribution]], the log-Cauchy distribution is a logstable distribution.<ref>{{cite journal|title=Distribution function values for logstable distributions|doi=10.1016/0898-1221(93)90128-I|author=Panton, D.B.|date=May 1993|pages=17–24|volume=25|issue=9|journal=Computers & Mathematics with Applications}}</ref> Logstable distributions have [[pole (complex analysis)|poles]] at x=0.<ref name=kleiber/> |
Since the Cauchy distribution is a [[stable distribution]], the log-Cauchy distribution is a logstable distribution.<ref>{{cite journal|title=Distribution function values for logstable distributions|doi=10.1016/0898-1221(93)90128-I|author=Panton, D.B.|date=May 1993|pages=17–24|volume=25|issue=9|journal=Computers & Mathematics with Applications}}</ref> Logstable distributions have [[pole (complex analysis)|poles]] at x=0.<ref name=kleiber/> |
Revision as of 01:09, 9 June 2020
Probability density function | |||
Cumulative distribution function | |||
Parameters |
(real) (real) | ||
---|---|---|---|
Support | |||
CDF | |||
Mean | infinite | ||
Median | |||
Variance | infinite | ||
Skewness | does not exist | ||
Excess kurtosis | does not exist | ||
MGF | does not exist |
In probability theory, a log-Cauchy distribution is a probability distribution of a random variable whose logarithm is distributed in accordance with a Cauchy distribution. If X is a random variable with a Cauchy distribution, then Y = exp(X) has a log-Cauchy distribution; likewise, if Y has a log-Cauchy distribution, then X = log(Y) has a Cauchy distribution.[1]
Characterization
Probability density function
The log-Cauchy distribution has the probability density function:
where is a real number and .[1][2] If is known, the scale parameter is .[1] and correspond to the location parameter and scale parameter of the associated Cauchy distribution.[1][3] Some authors define and as the location and scale parameters, respectively, of the log-Cauchy distribution.[3]
For and , corresponding to a standard Cauchy distribution, the probability density function reduces to:[4]
Cumulative distribution function
The cumulative distribution function (cdf) when and is:[4]
Survival function
The survival function when and is:[4]
Hazard rate
The hazard rate when and is:[4]
The hazard rate decreases at the beginning and at the end of the distribution, but there may be an interval over which the hazard rate increases.[4]
Properties
The log-Cauchy distribution is an example of a heavy-tailed distribution.[5] Some authors regard it as a "super-heavy tailed" distribution, because it has a heavier tail than a Pareto distribution-type heavy tail, i.e., it has a logarithmically decaying tail.[5][6] As with the Cauchy distribution, none of the non-trivial moments of the log-Cauchy distribution are finite.[4] The mean is a moment so the log-Cauchy distribution does not have a defined mean or standard deviation.[7][8]
The log-Cauchy distribution is infinitely divisible for some parameters but not for others.[9] Like the lognormal distribution, log-t or log-Student distribution and Weibull distribution, the log-Cauchy distribution is a special case of the generalized beta distribution of the second kind.[10][11] The log-Cauchy is actually a special case of the log-t distribution, similar to the Cauchy distribution being a special case of the Student's t distribution with 1 degree of freedom.[12][13]
Since the Cauchy distribution is a stable distribution, the log-Cauchy distribution is a logstable distribution.[14] Logstable distributions have poles at x=0.[13]
Estimating parameters
The median of the natural logarithms of a sample is a robust estimator of .[1] The median absolute deviation of the natural logarithms of a sample is a robust estimator of .[1]
Uses
In Bayesian statistics, the log-Cauchy distribution can be used to approximate the improper Jeffreys-Haldane density, 1/k, which is sometimes suggested as the prior distribution for k where k is a positive parameter being estimated.[15][16] The log-Cauchy distribution can be used to model certain survival processes where significant outliers or extreme results may occur.[2][3][17] An example of a process where a log-Cauchy distribution may be an appropriate model is the time between someone becoming infected with HIV virus and showing symptoms of the disease, which may be very long for some people.[3] It has also been proposed as a model for species abundance patterns.[18]
References
- ^ a b c d e f Olive, D.J. (June 23, 2008). "Applied Robust Statistics" (PDF). Southern Illinois University. p. 86. Archived from the original (PDF) on September 28, 2011. Retrieved 2011-10-18.
- ^ a b Lindsey, J.K. (2004). Statistical analysis of stochastic processes in time. Cambridge University Press. pp. 33, 50, 56, 62, 145. ISBN 978-0-521-83741-5.
- ^ a b c d Mode, C.J.; Sleeman, C.K. (2000). Stochastic processes in epidemiology: HIV/AIDS, other infectious diseases. World Scientific. pp. 29–37. ISBN 978-981-02-4097-4.
{{cite book}}
: Unknown parameter|lastauthoramp=
ignored (|name-list-style=
suggested) (help) - ^ a b c d e f Marshall, A.W.; Olkin, I. (2007). Life distributions: structure of nonparametric, semiparametric, and parametric families. Springer. pp. 443–444. ISBN 978-0-387-20333-1.
{{cite book}}
: Unknown parameter|lastauthoramp=
ignored (|name-list-style=
suggested) (help) - ^ a b Falk, M.; Hüsler, J.; Reiss, R. (2010). Laws of Small Numbers: Extremes and Rare Events. Springer. p. 80. ISBN 978-3-0348-0008-2.
{{cite book}}
: Unknown parameter|last-author-amp=
ignored (|name-list-style=
suggested) (help) - ^ Alves, M.I.F.; de Haan, L.; Neves, C. (March 10, 2006). "Statistical inference for heavy and super-heavy tailed distributions" (PDF). Archived from the original (PDF) on June 23, 2007.
{{cite web}}
: Unknown parameter|last-author-amp=
ignored (|name-list-style=
suggested) (help) - ^ "Moment". Mathworld. Retrieved 2011-10-19.
- ^ Wang, Y. "Trade, Human Capital and Technology Spillovers: An Industry Level Analysis". Carleton University: 14.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Bondesson, L. (2003). "On the Lévy Measure of the Lognormal and LogCauchy Distributions". Methodology and Computing in Applied Probability: 243–256. Archived from the original on 2012-04-25. Retrieved 2011-10-18.
- ^ Knight, J.; Satchell, S. (2001). Return distributions in finance. Butterworth-Heinemann. p. 153. ISBN 978-0-7506-4751-9.
{{cite book}}
: Unknown parameter|lastauthoramp=
ignored (|name-list-style=
suggested) (help) - ^ Kemp, M. (2009). Market consistency: model calibration in imperfect markets. Wiley. ISBN 978-0-470-77088-7.
- ^ MacDonald, J.B. (1981). "Measuring Income Inequality". In Taillie, C.; Patil, G.P.; Baldessari, B. (eds.). Statistical distributions in scientific work: proceedings of the NATO Advanced Study Institute. Springer. p. 169. ISBN 978-90-277-1334-6.
- ^ a b Kleiber, C.; Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Science. Wiley. pp. 101–102, 110. ISBN 978-0-471-15064-0.
{{cite book}}
: Unknown parameter|lastauthoramp=
ignored (|name-list-style=
suggested) (help) - ^ Panton, D.B. (May 1993). "Distribution function values for logstable distributions". Computers & Mathematics with Applications. 25 (9): 17–24. doi:10.1016/0898-1221(93)90128-I.
- ^ Good, I.J. (1983). Good thinking: the foundations of probability and its applications. University of Minnesota Press. p. 102. ISBN 978-0-8166-1142-3.
- ^ Chen, M. (2010). Frontiers of Statistical Decision Making and Bayesian Analysis. Springer. p. 12. ISBN 978-1-4419-6943-9.
- ^ Lindsey, J.K.; Jones, B.; Jarvis, P. (September 2001). "Some statistical issues in modelling pharmacokinetic data". Statistics in Medicine. 20 (17–18): 2775–278. doi:10.1002/sim.742. PMID 11523082.
{{cite journal}}
: Unknown parameter|last-author-amp=
ignored (|name-list-style=
suggested) (help) - ^ Zuo-Yun, Y. (June 2005). "LogCauchy, log-sech and lognormal distributions of species abundances in forest communities". Ecological Modelling. 184 (2–4): 329–340. doi:10.1016/j.ecolmodel.2004.10.011.
{{cite journal}}
: Unknown parameter|displayauthors=
ignored (|display-authors=
suggested) (help)