Lithoautotroph: Difference between revisions
No edit summary Tags: Mobile edit Mobile web edit |
m Rollback edit(s) by 2402:3A80:1595:7D:0:24:1944:2B01 (talk): Vandalism (RW 15) |
||
Line 3: | Line 3: | ||
Lithoautotrophs are extremely specific in using their energy source. Thus, despite the diversity in using inorganic molecules in order to obtain energy that lithoautotrophs exhibit as a group, one particular lithoautotroph would use only one type of inorganic molecule to get its energy. |
Lithoautotrophs are extremely specific in using their energy source. Thus, despite the diversity in using inorganic molecules in order to obtain energy that lithoautotrophs exhibit as a group, one particular lithoautotroph would use only one type of inorganic molecule to get its energy. |
||
==Geological processes== |
|||
==Geolog |
|||
Lithoautotrophs participate in many geological processes, such as the [[weathering]] of [[parent material]] (bedrock) to form [[soil]], as well as biogeochemical cycling of [[sulfur]], [[potassium]], and other elements. They may be present in the deep terrestrial subsurface (they have been found well over 3 km below the surface of the planet), in soils, and in [[endolith]] communities. As they are responsible for the liberation of many crucial nutrients, and participate in the [[pedogenesis|formation of soil]], lithoautotrophs play a crucial role in the maintenance of life on Earth. |
Lithoautotrophs participate in many geological processes, such as the [[weathering]] of [[parent material]] (bedrock) to form [[soil]], as well as biogeochemical cycling of [[sulfur]], [[potassium]], and other elements. They may be present in the deep terrestrial subsurface (they have been found well over 3 km below the surface of the planet), in soils, and in [[endolith]] communities. As they are responsible for the liberation of many crucial nutrients, and participate in the [[pedogenesis|formation of soil]], lithoautotrophs play a crucial role in the maintenance of life on Earth. |
||
Revision as of 12:18, 12 August 2020
A lithoautotroph or chemolithoautotroph is a microbe which derives energy from reduced compounds of mineral origin. Lithoautotrophs are a type of lithotrophs with autotrophic metabolic pathways. Lithoautotrophs are exclusively microbes; macrofauna do not possess the capability to use mineral sources of energy. Most lithoautotrophs belong to the domain Bacteria, while some belong to the domain Archaea. For lithoautotrophic bacteria, only inorganic molecules can be used as energy sources. The term "Lithotroph" is from Greek lithos (λίθος) meaning "rock" and trōphos (τροφοσ) meaning "consumer"; literally, it may be read "eaters of rock". Many lithoautotrophs are extremophiles, but this is not universally so.
Lithoautotrophs are extremely specific in using their energy source. Thus, despite the diversity in using inorganic molecules in order to obtain energy that lithoautotrophs exhibit as a group, one particular lithoautotroph would use only one type of inorganic molecule to get its energy.
Geological processes
Lithoautotrophs participate in many geological processes, such as the weathering of parent material (bedrock) to form soil, as well as biogeochemical cycling of sulfur, potassium, and other elements. They may be present in the deep terrestrial subsurface (they have been found well over 3 km below the surface of the planet), in soils, and in endolith communities. As they are responsible for the liberation of many crucial nutrients, and participate in the formation of soil, lithoautotrophs play a crucial role in the maintenance of life on Earth.
Acid mine drainage
Lithoautotrophic microbial consortia are responsible for the phenomenon known as acid mine drainage, whereby energy-rich pyrite present in mine tailing heaps and in exposed rock faces is metabolized to form sulfites, which form potentially corrosive sulfuric acid when dissolved in water and exposed to aerial oxygen. Acid mine drainage drastically alters the acidity and chemistry of groundwater and streams, and may endanger plant and animal populations. Activity similar to acid mine drainage, but on a much lower scale, is also found in natural conditions such as the rocky beds of glaciers, in soil and talus, and in the deep subsurface.
References
- Ramos JL. (May 2003). "Lessons from the genome of a lithoautotroph: making biomass from almost nothing". J. Bacteriol. 185 (9): 2690–1. doi:10.1128/JB.185.9.2690-2691.2003. PMC 154387. PMID 12700247.