Jump to content

Venus: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Add: pmc. Removed proxy or dead URL that duplicated free-DOI or unique identifier. Removed accessdate with no specified URL. | You can use this bot yourself. Report bugs here. | Suggested by AManWithNoPlan | All pages linked from cached copy of User:AManWithNoPlan/sandbox2 | via #UCB_webform_linked 2530/3680
Orbit and rotation: Clarification on multiple meanings of closeness
Line 252: Line 252:
[[File:Venusorbitsolarsystem.gif|thumb|Venus is the second planet from the Sun, orbiting approximately 1.6 times (yellow trail) in Earth's 365 days (blue trail).|alt=The orbits of Mercury, Venus, Earth and Mars]]
[[File:Venusorbitsolarsystem.gif|thumb|Venus is the second planet from the Sun, orbiting approximately 1.6 times (yellow trail) in Earth's 365 days (blue trail).|alt=The orbits of Mercury, Venus, Earth and Mars]]


Venus orbits the Sun at an average distance of about {{convert|0.72|AU|e6km+e6mi|abbr=unit|lk=on}}, and completes an orbit every 224.7 days. Although all [[planetary orbit]]s are [[ellipse|elliptical]], Venus' orbit is the closest to [[circle|circular]], with an [[eccentricity (orbit)|eccentricity]] of less than 0.01.<ref name="fact" /> When Venus lies between Earth and the Sun in [[Conjunction (astronomy)#Superior and inferior|inferior conjunction]], it makes the closest approach to Earth of any planet at an average distance of {{convert|41|e6km|e6mi|abbr=unit}}.<ref name="fact" /> However, it spends a large amount of its time away from Earth, meaning that it is the closest planet to Earth for only a minority of the time. This means that Mercury is actually the planet that is closest to Earth a plurality of the time.<ref>{{cite web |last1=Harford |first1=Tim |title=BBC Radio 4—More or Less, Sugar, Outdoors Play and Planets |url=https://www.bbc.co.uk/programmes/m0001y9p |website=BBC |date=January 11, 2019 |quote=Oliver Hawkins, more or less alumnus and statistical legend, wrote some code for us, which calculated which planet was closest to the Earth on each day for the past 50 years, and then sent the results to [[David A. Rothery]], professor of planetary geosciences at the Open University.}}</ref> The planet reaches inferior conjunction every 584 days, on average.<ref name="fact" /> Because of the [[Milankovitch cycles#Orbital shape (eccentricity)|decreasing eccentricity of Earth's orbit]], the minimum distances will become greater over tens of thousands of years. From the year{{nbs}}1 to 5383, there are 526 approaches less than 40{{nbs}}million{{nbs}}km; then there are none for about 60,158 years.<ref>{{cite web |title=Venus Close Approaches to Earth as predicted by Solex 11 |url=http://home.surewest.net/kheider/astro/Solex-Venus.txt |archive-url=https://web.archive.org/web/20120809051650/http://home.surewest.net/kheider/astro/Solex-Venus.txt |archive-date=9 August 2012 |accessdate=19 March 2009}} Numbers generated by [https://web.archive.org/web/20150918233453/http://chemistry.unina.it/~alvitagl/solex/ Solex]</ref>
Venus orbits the Sun at an average distance of about {{convert|0.72|AU|e6km+e6mi|abbr=unit|lk=on}}, and completes an orbit every 224.7 days. Although all [[planetary orbit]]s are [[ellipse|elliptical]], Venus' orbit is the closest to [[circle|circular]], with an [[eccentricity (orbit)|eccentricity]] of less than 0.01.<ref name="fact" /> When Venus lies between Earth and the Sun in [[Conjunction (astronomy)#Superior and inferior|inferior conjunction]], it makes the closest approach to Earth of any planet at an average distance of {{convert|41|e6km|e6mi|abbr=unit}}.<ref name="fact" />{{refn|It is important to be clear about the meaning of 'closeness'. In the astronomical literature, the term 'closest planets' often means 'the two planets that approach each other most closely'. In other words, the orbits of the two planets approach each other most closely. However, this does not mean that the two planets are closest over time. Essentially because Mercury is closer to the Sun than Venus, Mercury spends more time in proximity to Earth; it could, therefore, be said that Mercury is the planet that is 'closest to Earth when averaged over time'. However, using this time-average definition of 'closeness', it turns out that Mercury is the closest planet to ''all'' other planets in the solar system. For that reason, arguably, the proximity-definition is not particularly helpful. An episode of the BBC Radio 4 programme 'More or Less' explains the different notions of proximity well.<ref name="MoreOrLess" />| group = n}}<ref name="MoreOrLess">{{cite web |last1=Harford |first1=Tim |title=BBC Radio 4—More or Less, Sugar, Outdoors Play and Planets |url=https://www.bbc.co.uk/programmes/m0001y9p |website=BBC |date=January 11, 2019 |quote=Oliver Hawkins, more or less alumnus and statistical legend, wrote some code for us, which calculated which planet was closest to the Earth on each day for the past 50 years, and then sent the results to [[David A. Rothery]], professor of planetary geosciences at the Open University.}}</ref>
The planet reaches inferior conjunction every 584 days, on average.<ref name="fact" /> Because of the [[Milankovitch cycles#Orbital shape (eccentricity)|decreasing eccentricity of Earth's orbit]], the minimum distances will become greater over tens of thousands of years. From the year{{nbs}}1 to 5383, there are 526 approaches less than 40{{nbs}}million{{nbs}}km; then there are none for about 60,158 years.<ref>{{cite web |title=Venus Close Approaches to Earth as predicted by Solex 11 |url=http://home.surewest.net/kheider/astro/Solex-Venus.txt |archive-url=https://web.archive.org/web/20120809051650/http://home.surewest.net/kheider/astro/Solex-Venus.txt |archive-date=9 August 2012 |accessdate=19 March 2009}} Numbers generated by [https://web.archive.org/web/20150918233453/http://chemistry.unina.it/~alvitagl/solex/ Solex]</ref>


All the planets in the Solar System orbit the Sun in an [[anticlockwise]] direction as viewed from above Earth's north pole. Most planets also rotate on their axes in an anti-clockwise direction, but Venus rotates clockwise in [[Retrograde and prograde motion|retrograde rotation]] once every 243 Earth days—the slowest rotation of any planet. Because its rotation is so slow, Venus is very close to spherical.<ref name="Venus">{{cite encyclopedia |title=Venus |url=http://www.britannica.com/EBchecked/topic/625665/Venus |encyclopedia=Encyclopædia Britannica Online |last=Squyres |first=Steven W. |author-link=Steven W. Squyres |date=2016 |access-date=7 January 2016}}</ref> A Venusian [[sidereal day]] thus lasts longer than a Venusian year (243 versus 224.7 Earth days). Venus' equator rotates at {{convert|6.52|km/h|mph|abbr=on}}, whereas Earth's rotates at {{convert|1674.4|km/h|mph|abbr=on}}.{{refn|The equatorial speed of Earth is given as both about 1674.4{{nbs}}km/h and 1669.8{{nbs}}km/h by reliable sources. The simplest way to determine the correct figure is to multiply Earth's radius of {{nowrap|{{val|6378137}} m}} (WGS84) and Earth's angular speed, {{nowrap|{{val|7.2921150}}{{e|−5}} rad/s}},<ref name=IERS>{{citation |editor-last1=Petit |editor-first1=Gérard |editor-last2=Luzum |editor-first2=Brian |title=IERS Conventions (2010) |publisher=IERS |url=https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html |page=19}}</ref> yielding {{nowrap|465.1011 m/s {{=}}}} 1674.364{{nbs}}km/h. The incorrect figure of 1669.8{{nbs}}km/h is obtained by dividing Earth's equatorial circumference by 24{{nbs}}h. But the correct speed must be relative to inertial space, so the stellar day of {{nowrap|{{val|86164.098903691}} s/3600 {{=}}}} {{nowrap|{{val|23.934472}} h}} {{nowrap|(23 h 56 m 4.0989 s)}} must be used.<ref name=stellar>{{citation |author=IERS |author-link=IERS |title=Useful Constants |publisher=IERS}}</ref> Thus {{nowrap|{{sfrac|2π(6378.137&nbsp;km)|23.934472 h}} {{=}}}} 1674.364{{nbs}}km/h.<ref name=CASTOR>{{citation |last=Earl |first=Michael A. |title=Rotation Speed |publisher=Canadian Astronomy, Satellite Tracking and Optical Research (CASTOR) |url=http://www.castor2.ca/16_Calc/03_Rotation/index.html}}</ref>}}<ref>{{cite book |chapterurl=https://books.google.com/books?id=PE99nOKjbXAC&pg=PA50 |chapter=Rotational velocity (equatorial) |title=The Cambridge Planetary Handbook |publisher=Cambridge University Press |last=Bakich |first=Michael E. |page=[https://archive.org/details/cambridgeplaneta00baki/page/50 50] |date=2000 |isbn=978-0-521-63280-5 |url=https://archive.org/details/cambridgeplaneta00baki/page/50 }}</ref> Venus' rotation has slowed in the 16 years between the ''Magellan'' spacecraft and ''Venus Express'' visits; each Venusian sidereal day has increased by 6.5{{nbs}}minutes in that time span.<ref name="slowing spin">{{cite web |url=http://www.esa.int/Our_Activities/Space_Science/Venus_Express/Could_Venus_be_shifting_gear |title=Could Venus Be Shifting Gear? |series=Venus Express |publisher=European Space Agency |date=10 February 2012 |access-date=7 January 2016}}</ref> Because of the retrograde rotation, the length of a [[solar day]] on Venus is significantly shorter than the sidereal day, at 116.75 Earth days (making the Venusian solar day shorter than [[Mercury (planet)|Mercury]]'s 176 Earth days).<ref name="planetary-facts">{{cite web |url=http://www.planetary.org/explore/space-topics/compare/planetary-facts.html |title=Planetary Facts |publisher=[[The Planetary Society]] |access-date=20 January 2016 |archive-url=https://web.archive.org/web/20120511011542/http://www.planetary.org/explore/space-topics/compare/planetary-facts.html |archive-date=11 May 2012 |url-status=live}}</ref> One Venusian year is about 1.92{{nbs}}Venusian solar days.<ref name="compare">{{cite web |url=http://www.planetary.org/explore/topics/compare_the_planets/terrestrial.html |title=Space Topics: Compare the Planets |publisher=[[The Planetary Society]] |access-date=12 January 2016 |archive-url=https://web.archive.org/web/20060218084852/http://planetary.org/explore/topics/compare_the_planets/terrestrial.html |archive-date=18 February 2006}}</ref> To an observer on the surface of Venus, the Sun would rise in [[Poles of astronomical bodies|the west]] and set in the east,<ref name="compare" /> although Venus' opaque clouds prevent observing the Sun from the planet's surface.<ref>{{cite book |title=Solar System Voyage |author=Serge Brunier |authorlink=Serge Brunier |publisher=Cambridge University Press |year=2002 |page=40 |url=https://books.google.com/books?id=JkLxJOhEj-wC&pg=PA40 |isbn=978-0-521-80724-1 |translator-last=Dunlop |translator-first=Storm}}</ref>
All the planets in the Solar System orbit the Sun in an [[anticlockwise]] direction as viewed from above Earth's north pole. Most planets also rotate on their axes in an anti-clockwise direction, but Venus rotates clockwise in [[Retrograde and prograde motion|retrograde rotation]] once every 243 Earth days—the slowest rotation of any planet. Because its rotation is so slow, Venus is very close to spherical.<ref name="Venus">{{cite encyclopedia |title=Venus |url=http://www.britannica.com/EBchecked/topic/625665/Venus |encyclopedia=Encyclopædia Britannica Online |last=Squyres |first=Steven W. |author-link=Steven W. Squyres |date=2016 |access-date=7 January 2016}}</ref> A Venusian [[sidereal day]] thus lasts longer than a Venusian year (243 versus 224.7 Earth days). Venus' equator rotates at {{convert|6.52|km/h|mph|abbr=on}}, whereas Earth's rotates at {{convert|1674.4|km/h|mph|abbr=on}}.{{refn|The equatorial speed of Earth is given as both about 1674.4{{nbs}}km/h and 1669.8{{nbs}}km/h by reliable sources. The simplest way to determine the correct figure is to multiply Earth's radius of {{nowrap|{{val|6378137}} m}} (WGS84) and Earth's angular speed, {{nowrap|{{val|7.2921150}}{{e|−5}} rad/s}},<ref name=IERS>{{citation |editor-last1=Petit |editor-first1=Gérard |editor-last2=Luzum |editor-first2=Brian |title=IERS Conventions (2010) |publisher=IERS |url=https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html |page=19}}</ref> yielding {{nowrap|465.1011 m/s {{=}}}} 1674.364{{nbs}}km/h. The incorrect figure of 1669.8{{nbs}}km/h is obtained by dividing Earth's equatorial circumference by 24{{nbs}}h. But the correct speed must be relative to inertial space, so the stellar day of {{nowrap|{{val|86164.098903691}} s/3600 {{=}}}} {{nowrap|{{val|23.934472}} h}} {{nowrap|(23 h 56 m 4.0989 s)}} must be used.<ref name=stellar>{{citation |author=IERS |author-link=IERS |title=Useful Constants |publisher=IERS}}</ref> Thus {{nowrap|{{sfrac|2π(6378.137&nbsp;km)|23.934472 h}} {{=}}}} 1674.364{{nbs}}km/h.<ref name=CASTOR>{{citation |last=Earl |first=Michael A. |title=Rotation Speed |publisher=Canadian Astronomy, Satellite Tracking and Optical Research (CASTOR) |url=http://www.castor2.ca/16_Calc/03_Rotation/index.html}}</ref>}}<ref>{{cite book |chapterurl=https://books.google.com/books?id=PE99nOKjbXAC&pg=PA50 |chapter=Rotational velocity (equatorial) |title=The Cambridge Planetary Handbook |publisher=Cambridge University Press |last=Bakich |first=Michael E. |page=[https://archive.org/details/cambridgeplaneta00baki/page/50 50] |date=2000 |isbn=978-0-521-63280-5 |url=https://archive.org/details/cambridgeplaneta00baki/page/50 }}</ref> Venus' rotation has slowed in the 16 years between the ''Magellan'' spacecraft and ''Venus Express'' visits; each Venusian sidereal day has increased by 6.5{{nbs}}minutes in that time span.<ref name="slowing spin">{{cite web |url=http://www.esa.int/Our_Activities/Space_Science/Venus_Express/Could_Venus_be_shifting_gear |title=Could Venus Be Shifting Gear? |series=Venus Express |publisher=European Space Agency |date=10 February 2012 |access-date=7 January 2016}}</ref> Because of the retrograde rotation, the length of a [[solar day]] on Venus is significantly shorter than the sidereal day, at 116.75 Earth days (making the Venusian solar day shorter than [[Mercury (planet)|Mercury]]'s 176 Earth days).<ref name="planetary-facts">{{cite web |url=http://www.planetary.org/explore/space-topics/compare/planetary-facts.html |title=Planetary Facts |publisher=[[The Planetary Society]] |access-date=20 January 2016 |archive-url=https://web.archive.org/web/20120511011542/http://www.planetary.org/explore/space-topics/compare/planetary-facts.html |archive-date=11 May 2012 |url-status=live}}</ref> One Venusian year is about 1.92{{nbs}}Venusian solar days.<ref name="compare">{{cite web |url=http://www.planetary.org/explore/topics/compare_the_planets/terrestrial.html |title=Space Topics: Compare the Planets |publisher=[[The Planetary Society]] |access-date=12 January 2016 |archive-url=https://web.archive.org/web/20060218084852/http://planetary.org/explore/topics/compare_the_planets/terrestrial.html |archive-date=18 February 2006}}</ref> To an observer on the surface of Venus, the Sun would rise in [[Poles of astronomical bodies|the west]] and set in the east,<ref name="compare" /> although Venus' opaque clouds prevent observing the Sun from the planet's surface.<ref>{{cite book |title=Solar System Voyage |author=Serge Brunier |authorlink=Serge Brunier |publisher=Cambridge University Press |year=2002 |page=40 |url=https://books.google.com/books?id=JkLxJOhEj-wC&pg=PA40 |isbn=978-0-521-80724-1 |translator-last=Dunlop |translator-first=Storm}}</ref>

Revision as of 15:21, 22 November 2020

Venus
Venus in contrast-enhanced false colour, February 1974[a]
Designations
Pronunciation/ˈvnəs/
AdjectivesVenusian /vɪˈnjziən, -ʒən/,[1] rarely Cytherean /sɪθəˈrən/ [see][2] or Venerean / Venerian /vɪˈnɪəriən/[3]
SymbolThe Venusian symbol, a circle with a small equal-armed cross beneath it
Orbital characteristics[4][5]
Epoch J2000
Aphelion
  • 0.728213 AU
  • 108,939,000 km
Perihelion
  • 0.718440 AU
  • 107,477,000 km
  • 0.723332 AU
  • 108,208,000 km
Eccentricity0.006772[6]
583.92 days[4]
35.02 km/s
50.115°
Inclination
76.680°[6]
54.884°
SatellitesNone
Physical characteristics
  • 6,051.8±1.0 km[8]
  • 0.9499 Earths
Flattening0[8]
  • 4.6023×108 km2
  • 0.902 Earths
Volume
  • 9.2843×1011 km3
  • 0.866 Earths
Mass
  • 4.8675×1024 kg[9]
  • 0.815 Earths
Mean density
5.243 g/cm3
  • 8.87 m/s2
  • 0.904 g
10.36 km/s (6.44 mi/s)[10]
−243.025 d (retrograde)[4]
Equatorial rotation velocity
6.52 km/h (1.81 m/s)
2.64° (for retrograde rotation)
177.36° (to orbit)[4][note 1]
North pole right ascension
  • 18h 11m 2s
  • 272.76°[11]
North pole declination
67.16°
Albedo
Surface temp. min mean max
Kelvin 737 K[4]
Celsius 464 °C
Fahrenheit 867 °F
−4.92 to −2.98[14]
9.7″–66.0″[4]
Atmosphere[4]
Surface pressure
92 bar (9.2 MPa)
91 atm
Composition by volume
  1. ^ Defining the rotation as retrograde, as done by NASA space missions and the USGS, puts Ishtar Terra in the northern hemisphere and makes the axial tilt 2.64°. Following the right-hand rule for prograde rotation puts Ishtar Terra in the southern hemisphere and makes the axial tilt 177.36°.

Venus is the second planet from the Sun. It is named after the Roman goddess of love and beauty. As the second-brightest natural object in Earth's night sky after the Moon, Venus can cast shadows and can be, on rare occasion, visible to the naked eye in broad daylight.[15][16] Venus lies within Earth's orbit, and so never appears to venture far from the Sun, either setting in the west just after dusk or rising in the east a bit before dawn. Venus orbits the Sun every 224.7 Earth days.[17] With a rotation period of 243 Earth days, it takes longer to rotate about its axis than any other planet in the Solar System by far, and does so in the opposite direction to all but Uranus (meaning the Sun rises in the west and sets in the east).[18] Venus does not have any moons, a distinction it shares only with Mercury among the planets in the Solar System.[19]

Venus is a terrestrial planet and is sometimes called Earth's "sister planet" because of their similar size, mass, proximity to the Sun, and bulk composition. It is radically different from Earth in other respects. It has the densest atmosphere of the four terrestrial planets, consisting of more than 96% carbon dioxide. The atmospheric pressure at the planet's surface is about 92 times the sea level pressure of Earth, or roughly the pressure at 900 m (3,000 ft) underwater on Earth. Venus has, by far, the hottest surface of any planet in the Solar System, with a mean temperature of 737 K (464 °C; 867 °F), even though Mercury is closer to the Sun. Venus is shrouded by an opaque layer of highly reflective clouds of sulfuric acid, preventing its surface from being seen from space in visible light. It may have had water oceans in the past,[20][21] but these would have vaporized as the temperature rose due to a runaway greenhouse effect.[22] The water has probably photodissociated, and the free hydrogen has been swept into interplanetary space by the solar wind because of the lack of a planetary magnetic field.[23] Venus' surface is a dry desertscape interspersed with slab-like rocks and is periodically resurfaced by volcanism.

As one of the brightest objects in the sky, Venus has been a major fixture in human culture for as long as records have existed. It has been made sacred to gods of many cultures, and has been a prime inspiration for writers and poets as the "morning star" and "evening star". Venus was the first planet to have its motions plotted across the sky, as early as the second millennium BC.[24]

Due to its proximity to Earth, Venus has been a prime target for early interplanetary exploration. It was the first planet beyond Earth visited by a spacecraft (Mariner 2 in 1962), and the first to be successfully landed on (by Venera 7 in 1970). Venus' thick clouds render observation of its surface impossible in visible light, and the first detailed maps did not emerge until the arrival of the Magellan orbiter in 1991. Plans have been proposed for rovers or more complex missions, but they are hindered by Venus' hostile surface conditions.

The possibility of life on Venus has long been a topic of speculation, and in recent years has received active research. Following a 2019 observation that the light absorbance of the upper cloud layers was consistent with the presence of microorganisms, a September 2020 article in Nature Astronomy announced the detection of phosphine gas, a biomarker, in concentrations higher than can be explained by any known abiotic source.[25][26][27] However, doubts have been cast on these observations due to data-processing issues and the failure to detect phosphine at other wavelengths.[28]. By late October 2020, re-analysis of data with a proper subtraction of background did not result in the detection of phosphine.[29][30][31]

Physical characteristics

Venus is one of the four terrestrial planets in the Solar System, meaning that it is a rocky body like Earth. It is similar to Earth in size and mass, and is often described as Earth's "sister" or "twin".[32] The diameter of Venus is 12,103.6 km (7,520.8 mi)—only 638.4 km (396.7 mi) less than Earth's—and its mass is 81.5% of Earth's. Conditions on the Venusian surface differ radically from those on Earth because its dense atmosphere is 96.5% carbon dioxide, with most of the remaining 3.5% being nitrogen.[33]

Geography

Venus, represented without its atmosphere, side by side with Earth. Venus is slightly smaller.
Size comparison of Venus (using a false-colour, radar-based image of the surface) and Earth
Planet Venus: 1974 images from Mariner 10 newly processed in 2020. Enhanced contrast on the right.
File:Topographic Globe of Venus.gif
The topographic globe of Venus
File:Radar Globe of Venus.gif
The radar globe of Venus

The Venusian surface was a subject of speculation until some of its secrets were revealed by planetary science in the 20th century. Venera landers in 1975 and 1982 returned images of a surface covered in sediment and relatively angular rocks.[34] The surface was mapped in detail by Magellan in 1990–91. The ground shows evidence of extensive volcanism, and the sulfur in the atmosphere may indicate that there have been recent eruptions.[35][36]

About 80% of the Venusian surface is covered by smooth, volcanic plains, consisting of 70% plains with wrinkle ridges and 10% smooth or lobate plains.[37] Two highland "continents" make up the rest of its surface area, one lying in the planet's northern hemisphere and the other just south of the equator. The northern continent is called Ishtar Terra after Ishtar, the Babylonian goddess of love, and is about the size of Australia. Maxwell Montes, the highest mountain on Venus, lies on Ishtar Terra. Its peak is 11 km (7 mi) above the Venusian average surface elevation.[38] The southern continent is called Aphrodite Terra, after the Greek goddess of love, and is the larger of the two highland regions at roughly the size of South America. A network of fractures and faults covers much of this area.[39]

The absence of evidence of lava flow accompanying any of the visible calderas remains an enigma. The planet has few impact craters, demonstrating that the surface is relatively young, at 300–600 million years old.[40][41] Venus has some unique surface features in addition to the impact craters, mountains, and valleys commonly found on rocky planets. Among these are flat-topped volcanic features called "farra", which look somewhat like pancakes and range in size from 20 to 50 km (12 to 31 mi) across, and from 100 to 1,000 m (330 to 3,280 ft) high; radial, star-like fracture systems called "novae"; features with both radial and concentric fractures resembling spider webs, known as "arachnoids"; and "coronae", circular rings of fractures sometimes surrounded by a depression. These features are volcanic in origin.[42]

Most Venusian surface features are named after historical and mythological women.[43] Exceptions are Maxwell Montes, named after James Clerk Maxwell, and highland regions Alpha Regio, Beta Regio, and Ovda Regio. The last three features were named before the current system was adopted by the International Astronomical Union, the body which oversees planetary nomenclature.[44]

The longitude of physical features on Venus are expressed relative to its prime meridian. The original prime meridian passed through the radar-bright spot at the centre of the oval feature Eve, located south of Alpha Regio.[45] After the Venera missions were completed, the prime meridian was redefined to pass through the central peak in the crater Ariadne.[46][47]

Surface geology

Image is false-colour, with Maat Mons represented in hues of gold and fiery red, against a black background
False-colour radar map of Maat Mons vertically exaggerated 22.5 times

Much of the Venusian surface appears to have been shaped by volcanic activity. Venus has several times as many volcanoes as Earth, and it has 167 large volcanoes that are over 100 km (60 mi) across. The only volcanic complex of this size on Earth is the Big Island of Hawaii.[42]: 154  This is not because Venus is more volcanically active than Earth, but because its crust is older. Earth's oceanic crust is continually recycled by subduction at the boundaries of tectonic plates, and has an average age of about a hundred million years,[48] whereas the Venusian surface is estimated to be 300–600 million years old.[40][42]

Several lines of evidence point to ongoing volcanic activity on Venus. Sulfur dioxide concentrations in the atmosphere dropped by a factor of 10 between 1978 and 1986, jumped in 2006, and again declined 10-fold.[49] This may mean that levels had been boosted several times by large volcanic eruptions.[50][51] It has also been suggested that Venusian lightning (discussed below) could originate from volcanic activity (i.e. volcanic lightning). In January 2020, astronomers reported evidence that suggests that Venus is currently volcanically active.[52][53]

In 2008 and 2009, the first direct evidence for ongoing volcanism was observed by Venus Express, in the form of four transient localized infrared hot spots within the rift zone Ganis Chasma,[54][n 1] near the shield volcano Maat Mons. Three of the spots were observed in more than one successive orbit. These spots are thought to represent lava freshly released by volcanic eruptions.[55][56] The actual temperatures are not known, because the size of the hot spots could not be measured, but are likely to have been in the 800–1,100 K (527–827 °C; 980–1,520 °F) range, relative to a normal temperature of 740 K (467 °C; 872 °F).[57]

The plains of Venus
Impact craters on the surface of Venus (false-colour image reconstructed from radar data)

Almost a thousand impact craters on Venus are evenly distributed across its surface. On other cratered bodies, such as Earth and the Moon, craters show a range of states of degradation. On the Moon, degradation is caused by subsequent impacts, whereas on Earth it is caused by wind and rain erosion. On Venus, about 85% of the craters are in pristine condition. The number of craters, together with their well-preserved condition, indicates the planet underwent a global resurfacing event 300–600 million years ago,[40][41] followed by a decay in volcanism.[58] Whereas Earth's crust is in continuous motion, Venus is thought to be unable to sustain such a process. Without plate tectonics to dissipate heat from its mantle, Venus instead undergoes a cyclical process in which mantle temperatures rise until they reach a critical level that weakens the crust. Then, over a period of about 100 million years, subduction occurs on an enormous scale, completely recycling the crust.[42]

Venusian craters range from 3 to 280 km (2 to 174 mi) in diameter. No craters are smaller than 3 km, because of the effects of the dense atmosphere on incoming objects. Objects with less than a certain kinetic energy are slowed so much by the atmosphere that they do not create an impact crater.[59] Incoming projectiles less than 50 m (160 ft) in diameter will fragment and burn up in the atmosphere before reaching the ground.[60]

The stratigraphically oldest tessera terrains have consistently lower thermal emissivity than the surrounding basaltic plains measured by Venus Express and Magellan, indicating a different, possibly a more felsic, mineral assemblage.[20][61] The mechanism to generate a large amount of felsic crust usually requires the presence of water ocean and plate tectonics, implying that habitable condition had existed on early Venus. However, the nature of tessera terrains is far from certain.[62]

Internal structure

The internal structure of Venus showing the crust (outer layer), the mantle (middle layer) and the core (inner layer)
Venus, represented without its atmosphere.

Without seismic data or knowledge of its moment of inertia, little direct information is available about the internal structure and geochemistry of Venus.[63] The similarity in size and density between Venus and Earth suggests they share a similar internal structure: a core, mantle, and crust. Like that of Earth, the Venusian core is at least partially liquid because the two planets have been cooling at about the same rate.[64] The slightly smaller size of Venus means pressures are 24% lower in its deep interior than Earth's.[65] The principal difference between the two planets is the lack of evidence for plate tectonics on Venus, possibly because its crust is too strong to subduct without water to make it less viscous. This results in reduced heat loss from the planet, preventing it from cooling and providing a likely explanation for its lack of an internally generated magnetic field.[66] Instead, Venus may lose its internal heat in periodic major resurfacing events.[40]

Atmosphere and climate

The atmosphere of Venus appears darker and lined with shadows. The shadows trace the prevailing wind direction.
Cloud structure in the Venusian atmosphere in 2018, revealed by observations in the two ultraviolet bands by Akatsuki
A false-colour image of Venus: ribbons of lighter colour stretch haphazardly across the surface. Plainer areas of more even colouration lie between.
False-color global radar view of Venus (without the clouds) from Magellan between 1990 and 1994

Venus has an extremely dense atmosphere composed of 96.5% carbon dioxide, 3.5% nitrogen, and traces of other gases including sulfur dioxide.[67] The mass of its atmosphere is 93 times that of Earth's, whereas the pressure at its surface is about 92 times that at Earth's—a pressure equivalent to that at a depth of nearly 1 km (58 mi) under Earth's oceans. The density at the surface is 65 kg/m3, 6.5% that of water or 50 times as dense as Earth's atmosphere at 293 K (20 °C; 68 °F) at sea level. The CO2-rich atmosphere generates the strongest greenhouse effect in the Solar System, creating surface temperatures of at least 735 K (462 °C; 864 °F).[17][68] This makes Venus' surface hotter than Mercury's, which has a minimum surface temperature of 53 K (−220 °C; −364 °F) and maximum surface temperature of 700 K (427 °C; 801 °F),[69][70] even though Venus is nearly twice Mercury's distance from the Sun and thus receives only 25% of Mercury's solar irradiance. This temperature is higher than that used for sterilization.

Venus' atmosphere is extremely enriched of primordial noble gases compared to that of Earth.[71] This enrichment indicates an early divergence from Earth in evolution. An unusually large comet impact[72] or accretion of a more massive primary atmosphere from solar nebula[73] have been proposed to explain the enrichment. However, the atmosphere is also depleted of radiogenic argon, a proxy to mantle degassing, suggesting an early shutdown of major magmatism.[74][75]

Studies have suggested that billions of years ago, Venus' atmosphere could have been much more like the one surrounding Earth, and that there may have been substantial quantities of liquid water on the surface, but after a period of 600 million to several billion years,[76] a runaway greenhouse effect was caused by the evaporation of that original water, which generated a critical level of greenhouse gases in its atmosphere.[77] Although the surface conditions on Venus are no longer hospitable to any Earth-like life that may have formed before this event, there is speculation on the possibility that life exists in the upper cloud layers of Venus, 50 km (30 mi) up from the surface, where the temperature ranges between 303 and 353 K (30 and 80 °C; 86 and 176 °F) but the environment is acidic.[78][79][80] The detection of phosphine in Venus' atmosphere, with no known pathway for abiotic production, led to speculation in September 2020 that there could be extant life currently present in the atmosphere.[81][82]

Thermal inertia and the transfer of heat by winds in the lower atmosphere mean that the temperature of Venus' surface does not vary significantly between the planet's two hemispheres, those facing and not facing the Sun, despite Venus' extremely slow rotation. Winds at the surface are slow, moving at a few kilometres per hour, but because of the high density of the atmosphere at the surface, they exert a significant amount of force against obstructions, and transport dust and small stones across the surface. This alone would make it difficult for a human to walk through, even without the heat, pressure, and lack of oxygen.[83]

Above the dense CO2 layer are thick clouds, consisting mainly of sulfuric acid, which is formed by sulfur dioxide and water through a chemical reaction resulting in sulfuric acid hydrate. Additionally, the atmosphere consists of approximately 1% ferric chloride.[84][85] Other possible constituents of the cloud particles are ferric sulfate, aluminium chloride and phosphoric anhydride. Clouds at different levels have different compositions and particle size distributions.[84] These clouds reflect and scatter about 90% of the sunlight that falls on them back into space, and prevent visual observation of Venus' surface. The permanent cloud cover means that although Venus is closer than Earth to the Sun, it receives less sunlight on the ground. Strong 300 km/h (185 mph) winds at the cloud tops go around Venus about every four to five Earth days.[86] Winds on Venus move at up to 60 times the speed of its rotation, whereas Earth's fastest winds are only 10–20% rotation speed.[87]

The surface of Venus is effectively isothermal; it retains a constant temperature not only between the two hemispheres but between the equator and the poles.[4][88] Venus' minute axial tilt—less than 3°, compared to 23° on Earth—also minimises seasonal temperature variation.[89] Altitude is one of the few factors that affect Venusian temperature. The highest point on Venus, Maxwell Montes, is therefore the coolest point on Venus, with a temperature of about 655 K (380 °C; 715 °F) and an atmospheric pressure of about 4.5 MPa (45 bar).[90][91] In 1995, the Magellan spacecraft imaged a highly reflective substance at the tops of the highest mountain peaks that bore a strong resemblance to terrestrial snow. This substance likely formed from a similar process to snow, albeit at a far higher temperature. Too volatile to condense on the surface, it rose in gaseous form to higher elevations, where it is cooler and could precipitate. The identity of this substance is not known with certainty, but speculation has ranged from elemental tellurium to lead sulfide (galena).[92]

Although Venus has no seasons as such, in 2019 astronomers identified a cyclical variation in sunlight absorption by the atmosphere, possibly caused by opaque, absorbing particles suspended in the upper clouds. The variation causes observed changes in the speed of Venus' zonal winds, and appears to rise and fall in time with the Sun's 11-year sunspot cycle.[93]

The existence of lightning in the atmosphere of Venus has been controversial[94] since the first suspected bursts were detected by the Soviet Venera probes[95][96][97] In 2006–07, Venus Express clearly detected whistler mode waves, the signatures of lightning. Their intermittent appearance indicates a pattern associated with weather activity. According to these measurements, the lightning rate is at least half of that on Earth,[98] however other instruments have not detected lightning at all.[94] The origin of any lightning remains unclear, but could originate from the clouds or volcanoes.

In 2007, Venus Express discovered that a huge double atmospheric vortex exists at the south pole.[99][100] Venus Express also discovered, in 2011, that an ozone layer exists high in the atmosphere of Venus.[101] On 29 January 2013, ESA scientists reported that the ionosphere of Venus streams outwards in a manner similar to "the ion tail seen streaming from a comet under similar conditions."[102][103]

In December 2015, and to a lesser extent in April and May 2016, researchers working on Japan's Akatsuki mission observed bow shapes in the atmosphere of Venus. This was considered direct evidence of the existence of perhaps the largest stationary gravity waves in the solar system.[104][105][106]

Atmospheric composition
The atmosphere of Earth is represented as a series of coloured spikes. The green of water dominates, while the red of carbon dioxide clusters near the left side.
Absorption spectrum of a simple gas mixture corresponding to Earth's atmosphere
The atmosphere of Venus is represented on the same graph. Here the red of carbon dioxide is almost overwhelming, but the green of water and the purple of carbon monoxide are present.
The composition of the atmosphere of Venus based on HITRAN data[107] created using HITRAN on the Web system.[108]
Green colour—water vapour, red—carbon dioxide, WN—wavenumber (other colours have different meanings, shorter wavelengths on the right, longer on the left).

Magnetic field and core

In 1967, Venera 4 found Venus' magnetic field to be much weaker than that of Earth. This magnetic field is induced by an interaction between the ionosphere and the solar wind,[109][110] rather than by an internal dynamo as in the Earth's core. Venus' small induced magnetosphere provides negligible protection to the atmosphere against cosmic radiation.

The lack of an intrinsic magnetic field at Venus was surprising, given that it is similar to Earth in size and was expected also to contain a dynamo at its core. A dynamo requires three things: a conducting liquid, rotation, and convection. The core is thought to be electrically conductive and, although its rotation is often thought to be too slow, simulations show it is adequate to produce a dynamo.[111][112] This implies that the dynamo is missing because of a lack of convection in Venus' core. On Earth, convection occurs in the liquid outer layer of the core because the bottom of the liquid layer is much higher in temperature than the top. On Venus, a global resurfacing event may have shut down plate tectonics and led to a reduced heat flux through the crust. This would cause the mantle temperature to increase, thereby reducing the heat flux out of the core. As a result, no internal geodynamo is available to drive a magnetic field. Instead, the heat from the core is reheating the crust.[113]

One possibility is that Venus has no solid inner core,[114] or that its core is not cooling, so that the entire liquid part of the core is at approximately the same temperature. Another possibility is that its core has already completely solidified. The state of the core is highly dependent on the concentration of sulfur, which is unknown at present.[113]

The weak magnetosphere around Venus means that the solar wind is interacting directly with its outer atmosphere. Here, ions of hydrogen and oxygen are being created by the dissociation of neutral molecules from ultraviolet radiation. The solar wind then supplies energy that gives some of these ions sufficient velocity to escape Venus' gravity field. This erosion process results in a steady loss of low-mass hydrogen, helium, and oxygen ions, whereas higher-mass molecules, such as carbon dioxide, are more likely to be retained. Atmospheric erosion by the solar wind probably led to the loss of most of Venus' water during the first billion years after it formed.[115] The erosion has increased the ratio of higher-mass deuterium to lower-mass hydrogen in the atmosphere 100 times compared to the rest of the solar system.[116]

Orbit and rotation

The orbits of Mercury, Venus, Earth and Mars
Venus is the second planet from the Sun, orbiting approximately 1.6 times (yellow trail) in Earth's 365 days (blue trail).

Venus orbits the Sun at an average distance of about 0.72 AU (108 million km; 67 million mi), and completes an orbit every 224.7 days. Although all planetary orbits are elliptical, Venus' orbit is the closest to circular, with an eccentricity of less than 0.01.[4] When Venus lies between Earth and the Sun in inferior conjunction, it makes the closest approach to Earth of any planet at an average distance of 41 million km (25 million mi).[4][n 2][117] The planet reaches inferior conjunction every 584 days, on average.[4] Because of the decreasing eccentricity of Earth's orbit, the minimum distances will become greater over tens of thousands of years. From the year 1 to 5383, there are 526 approaches less than 40 million km; then there are none for about 60,158 years.[118]

All the planets in the Solar System orbit the Sun in an anticlockwise direction as viewed from above Earth's north pole. Most planets also rotate on their axes in an anti-clockwise direction, but Venus rotates clockwise in retrograde rotation once every 243 Earth days—the slowest rotation of any planet. Because its rotation is so slow, Venus is very close to spherical.[119] A Venusian sidereal day thus lasts longer than a Venusian year (243 versus 224.7 Earth days). Venus' equator rotates at 6.52 km/h (4.05 mph), whereas Earth's rotates at 1,674.4 km/h (1,040.4 mph).[123][124] Venus' rotation has slowed in the 16 years between the Magellan spacecraft and Venus Express visits; each Venusian sidereal day has increased by 6.5 minutes in that time span.[125] Because of the retrograde rotation, the length of a solar day on Venus is significantly shorter than the sidereal day, at 116.75 Earth days (making the Venusian solar day shorter than Mercury's 176 Earth days).[126] One Venusian year is about 1.92 Venusian solar days.[127] To an observer on the surface of Venus, the Sun would rise in the west and set in the east,[127] although Venus' opaque clouds prevent observing the Sun from the planet's surface.[128]

Venus may have formed from the solar nebula with a different rotation period and obliquity, reaching its current state because of chaotic spin changes caused by planetary perturbations and tidal effects on its dense atmosphere, a change that would have occurred over the course of billions of years. The rotation period of Venus may represent an equilibrium state between tidal locking to the Sun's gravitation, which tends to slow rotation, and an atmospheric tide created by solar heating of the thick Venusian atmosphere.[129][130] The 584-day average interval between successive close approaches to Earth is almost exactly equal to 5 Venusian solar days (5.001444 to be precise),[131] but the hypothesis of a spin-orbit resonance with Earth has been discounted.[132]

Venus has no natural satellites.[133] It has several trojan asteroids: the quasi-satellite 2002 VE68[134][135] and two other temporary trojans, 2001 CK32 and 2012 XE133.[136] In the 17th century, Giovanni Cassini reported a moon orbiting Venus, which was named Neith and numerous sightings were reported over the following 200 years, but most were determined to be stars in the vicinity. Alex Alemi's and David Stevenson's 2006 study of models of the early Solar System at the California Institute of Technology shows Venus likely had at least one moon created by a huge impact event billions of years ago.[137] About 10 million years later, according to the study, another impact reversed the planet's spin direction and caused the Venusian moon gradually to spiral inward until it collided with Venus.[138] If later impacts created moons, these were removed in the same way. An alternative explanation for the lack of satellites is the effect of strong solar tides, which can destabilize large satellites orbiting the inner terrestrial planets.[133]

Observability

A photograph of the night sky taken from the seashore. A glimmer of sunlight is on the horizon. There are many stars visible. Venus is at the centre, much brighter than any of the stars, and its light can be seen reflected in the ocean.
Venus, pictured center-right, is always brighter than all other planets or stars as seen from Earth. Jupiter is visible at the top of the image.

To the naked eye, Venus appears as a white point of light brighter than any other planet or star (apart from the Sun).[139] The planet's mean apparent magnitude is −4.14 with a standard deviation of 0.31.[14] The brightest magnitude occurs during crescent phase about one month before or after inferior conjunction. Venus fades to about magnitude −3 when it is backlit by the Sun.[140] The planet is bright enough to be seen in a clear midday sky[141] and is more easily visible when the Sun is low on the horizon or setting. As an inferior planet, it always lies within about 47° of the Sun.[142]

Venus "overtakes" Earth every 584 days as it orbits the Sun.[4] As it does so, it changes from the "Evening Star", visible after sunset, to the "Morning Star", visible before sunrise. Although Mercury, the other inferior planet, reaches a maximum elongation of only 28° and is often difficult to discern in twilight, Venus is hard to miss when it is at its brightest. Its greater maximum elongation means it is visible in dark skies long after sunset. As the brightest point-like object in the sky, Venus is a commonly misreported "unidentified flying object".

Phases

Diagram illustrating the phases of Venus
The phases of Venus and evolution of its apparent diameter

As it orbits the Sun, Venus displays phases like those of the Moon in a telescopic view. The planet appears as a small and "full" disc when it is on the opposite side of the Sun (at superior conjunction). Venus shows a larger disc and "quarter phase" at its maximum elongations from the Sun, and appears its brightest in the night sky. The planet presents a much larger thin "crescent" in telescopic views as it passes along the near side between Earth and the Sun. Venus displays its largest size and "new phase" when it is between Earth and the Sun (at inferior conjunction). Its atmosphere is visible through telescopes by the halo of sunlight refracted around it.[142]

Transits

Venus appears as a black bubble on the edge of the Sun's disk, dimmed through filters to a dull orange.
Transit of Venus, 2004

The Venusian orbit is slightly inclined relative to Earth's orbit; thus, when the planet passes between Earth and the Sun, it usually does not cross the face of the Sun. Transits of Venus occur when the planet's inferior conjunction coincides with its presence in the plane of Earth's orbit. Transits of Venus occur in cycles of 243 years with the current pattern of transits being pairs of transits separated by eight years, at intervals of about 105.5 years or 121.5 years—a pattern first discovered in 1639 by the English astronomer Jeremiah Horrocks.[143]

The latest pair was June 8, 2004 and June 5–6, 2012. The transit could be watched live from many online outlets or observed locally with the right equipment and conditions.[144]

The preceding pair of transits occurred in December 1874 and December 1882; the following pair will occur in December 2117 and December 2125.[145] The 1874 transit is the subject of the oldest film known, the 1874 Passage de Venus. Historically, transits of Venus were important, because they allowed astronomers to determine the size of the astronomical unit, and hence the size of the Solar System as shown by Horrocks in 1639.[146] Captain Cook's exploration of the east coast of Australia came after he had sailed to Tahiti in 1768 to observe a transit of Venus.[147][148]

Pentagram of Venus

A complex, spiral, floral pattern with five loops encircling the middle
The pentagram of Venus. Earth is positioned at the centre of the diagram, and the curve represents the direction and distance of Venus as a function of time.

The pentagram of Venus is the path that Venus makes as observed from Earth. Successive inferior conjunctions of Venus repeat very near a 13:8 ratio (Earth orbits eight times for every 13 orbits of Venus), shifting 144° upon sequential inferior conjunctions. The 13:8 ratio is approximate. 8/13 is approximately 0.61538 while Venus orbits the Sun in 0.61519 years.[149]

Daylight apparitions

Naked eye observations of Venus during daylight hours exist in several anecdotes and records. Astronomer Edmund Halley calculated its maximum naked eye brightness in 1716, when many Londoners were alarmed by its appearance in the daytime. French emperor Napoleon Bonaparte once witnessed a daytime apparition of the planet while at a reception in Luxembourg.[150] Another historical daytime observation of the planet took place during the inauguration of the American president Abraham Lincoln in Washington, D.C., on 4 March 1865.[151] Although naked eye visibility of Venus' phases is disputed, records exist of observations of its crescent.[152]

Ashen light

A long-standing mystery of Venus observations is the so-called ashen light—an apparent weak illumination of its dark side, seen when the planet is in the crescent phase. The first claimed observation of ashen light was made in 1643, but the existence of the illumination has never been reliably confirmed. Observers have speculated it may result from electrical activity in the Venusian atmosphere, but it could be illusory, resulting from the physiological effect of observing a bright, crescent-shaped object.[153][96]

Studies

Early studies

A hand-drawn sequence of images showing Venus passing over the edge of the Sun's disk, leaving an illusory drop of shadow behind
The "black drop effect" as recorded during the 1769 transit

Because the movements of Venus appear to be discontinuous (it disappears due to its proximity to the sun, for many days at a time, and then reappears on the other horizon), some cultures did not recognize Venus as single entity;[154] instead, they assumed it to be two separate stars on each horizon: the morning and evening star.[154] Nonetheless, a cylinder seal from the Jemdet Nasr period and the Venus tablet of Ammisaduqa from the First Babylonian dynasty indicate that the ancient Sumerians already knew that the morning and evening stars were the same celestial object.[155][154][156] In the Old Babylonian period, the planet Venus was known as Ninsi'anna, and later as Dilbat.[157] The name "Ninsi'anna" translates to "divine lady, illumination of heaven", which refers to Venus as the brightest visible "star". Earlier spellings of the name were written with the cuneiform sign si4 (= SU, meaning "to be red"), and the original meaning may have been "divine lady of the redness of heaven", in reference to the colour of the morning and evening sky.[158]

The Chinese historically referred to the morning Venus as "the Great White" (Tài-bái 太白) or "the Opener (Starter) of Brightness" (Qǐ-míng 啟明), and the evening Venus as "the Excellent West One" (Cháng-gēng 長庚).[159]

The ancient Greeks also initially believed Venus to be two separate stars: Phosphorus, the morning star, and Hesperus, the evening star. Pliny the Elder credited the realization that they were a single object to Pythagoras in the sixth century BCE,[160] while Diogenes Laërtius argued that Parmenides was probably responsible for this rediscovery.[161] Though they recognized Venus as a single object, the ancient Romans continued to designate the morning aspect of Venus as Lucifer, literally "Light-Bringer", and the evening aspect as Vesper, both of which are literal translations of their traditional Greek names.

In the second century, in his astronomical treatise Almagest, Ptolemy theorized that both Mercury and Venus are located between the Sun and the Earth. The 11th-century Persian astronomer Avicenna claimed to have observed the transit of Venus,[162] which later astronomers took as confirmation of Ptolemy's theory.[163] In the 12th century, the Andalusian astronomer Ibn Bajjah observed "two planets as black spots on the face of the Sun"; these were thought to be the transits of Venus and Mercury by 13th-century Maragha astronomer Qotb al-Din Shirazi, though this cannot be true as there were no Venus transits in Ibn Bajjah's lifetime.[164][n 3]

Venus is shown in various positions in its orbit round the Sun, with each position marking a different amount of surface illumination
Galileo's discovery that Venus showed phases (although remaining near the Sun in Earth's sky) proved that it orbits the Sun and not Earth.

When the Italian physicist Galileo Galilei first observed the planet in the early 17th century, he found it showed phases like the Moon, varying from crescent to gibbous to full and vice versa. When Venus is furthest from the Sun in the sky, it shows a half-lit phase, and when it is closest to the Sun in the sky, it shows as a crescent or full phase. This could be possible only if Venus orbited the Sun, and this was among the first observations to clearly contradict the Ptolemaic geocentric model that the Solar System was concentric and centred on Earth.[167][168]

The 1639 transit of Venus was accurately predicted by Jeremiah Horrocks and observed by him and his friend, William Crabtree, at each of their respective homes, on 4 December 1639 (24 November under the Julian calendar in use at that time).[169]

The atmosphere of Venus was discovered in 1761 by Russian polymath Mikhail Lomonosov.[170][171] Venus' atmosphere was observed in 1790 by German astronomer Johann Schröter. Schröter found when the planet was a thin crescent, the cusps extended through more than 180°. He correctly surmised this was due to scattering of sunlight in a dense atmosphere. Later, American astronomer Chester Smith Lyman observed a complete ring around the dark side of the planet when it was at inferior conjunction, providing further evidence for an atmosphere.[172] The atmosphere complicated efforts to determine a rotation period for the planet, and observers such as Italian-born astronomer Giovanni Cassini and Schröter incorrectly estimated periods of about 24 h from the motions of markings on the planet's apparent surface.[173]

Ground-based research

black and white image of Venus, its edges blurred and a small crescent of its surface illuminated
Modern telescopic view of Venus from Earth's surface

Little more was discovered about Venus until the 20th century. Its almost featureless disc gave no hint what its surface might be like, and it was only with the development of spectroscopic, radar and ultraviolet observations that more of its secrets were revealed. The first ultraviolet observations were carried out in the 1920s, when Frank E. Ross found that ultraviolet photographs revealed considerable detail that was absent in visible and infrared radiation. He suggested this was due to a dense, yellow lower atmosphere with high cirrus clouds above it.[174]

Spectroscopic observations in the 1900s gave the first clues about the Venusian rotation. Vesto Slipher tried to measure the Doppler shift of light from Venus, but found he could not detect any rotation. He surmised the planet must have a much longer rotation period than had previously been thought.[175] Later work in the 1950s showed the rotation was retrograde. Radar observations of Venus were first carried out in the 1960s, and provided the first measurements of the rotation period, which were close to the modern value.[176]

Radar observations in the 1970s revealed details of the Venusian surface for the first time. Pulses of radio waves were beamed at the planet using the 300 m (1,000 ft) radio telescope at Arecibo Observatory, and the echoes revealed two highly reflective regions, designated the Alpha and Beta regions. The observations also revealed a bright region attributed to mountains, which was called Maxwell Montes.[177] These three features are now the only ones on Venus that do not have female names.[44]

Exploration

Artist's impression of Mariner 2, launched in 1962: a skeletal, bottle-shaped spacecraft with a large radio dish on top

The first robotic space probe mission to Venus, and the first to any planet, began with the Soviet Venera program in 1961.[178] Venus was the target of numerous Soviet missions between 1967 and 1984 and for this reason has been described by Russian officials as a "Russian planet".[179][180]

The United States' exploration of Venus had its first success with the Mariner 2 mission on 14 December 1962, becoming the world's first successful interplanetary mission, passing 34,833 km (21,644 mi) above the surface of Venus, and gathering data on the planet's atmosphere.[181][182]

File:Venera9.png
180-degree panorama of Venus' surface from the Soviet Venera 9 lander, 1975. Black-and-white image of barren, black, slate-like rocks against a flat sky. The ground and the probe are the focus. Several lines are missing due to a simultaneous transmission of the scientific data.

On 18 October 1967, the Soviet Venera 4 successfully entered the atmosphere and deployed science experiments. Venera 4 showed the surface temperature was hotter than Mariner 2 had calculated, at almost 500 °C (932 °F), determined that the atmosphere was 95% carbon dioxide (CO
2
), and discovered that Venus' atmosphere was considerably denser than Venera 4's designers had anticipated.[183] The joint Venera 4Mariner 5 data were analysed by a combined Soviet–American science team in a series of colloquia over the following year,[184] in an early example of space cooperation.[185]

In 1974, Mariner 10 swung by Venus on its way to Mercury and took ultraviolet photographs of the clouds, revealing the extraordinarily high wind speeds in the Venusian atmosphere.

Global view of Venus in ultraviolet light done by Mariner 10

In 1975, the Soviet Venera 9 and 10 landers transmitted the first images from the surface of Venus, which were in black and white. In 1982 the first colour images of the surface were obtained with the Soviet Venera 13 and 14 landers.

NASA obtained additional data in 1978 with the Pioneer Venus project that consisted of two separate missions:[186] Pioneer Venus Orbiter and Pioneer Venus Multiprobe.[187] The successful Soviet Venera program came to a close in October 1983, when Venera 15 and 16 were placed in orbit to conduct detailed mapping of 25% of Venus' terrain (from the north pole to 30°N latitude)[188]

Several other Venus flybys took place in the 1980s and 1990s that increased the understanding of Venus, including Vega 1 (1985), Vega 2 (1985), Galileo (1990), Magellan (1994), Cassini–Huygens (1998), and MESSENGER (2006). Then, Venus Express by the European Space Agency (ESA) entered orbit around Venus in April 2006. Equipped with seven scientific instruments, Venus Express provided unprecedented long-term observation of Venus' atmosphere. ESA concluded that mission in December 2014.

As of 2020, Japan's Akatsuki is in a highly eccentric orbit around Venus since 7 December 2015, and there are several probing proposals under study by Roscosmos, NASA, and ISRO.

In 2016, the NASA Innovative Advanced Concepts program studied a rover, the Automaton Rover for Extreme Environments, designed to survive for an extended time in Venus' environmental conditions. It would be controlled by a mechanical computer and driven by wind power.[189]

In culture

Venus is portrayed just to the right of the large cypress tree in Vincent van Gogh's 1889 painting The Starry Night.[190][191]

Venus is a primary feature of the night sky, and so has been of remarkable importance in mythology, astrology and fiction throughout history and in different cultures.

In Sumerian religion, Inanna was associated with the planet Venus.[192][193] Several hymns praise Inanna in her role as the goddess of the planet Venus.[154][193][192] Theology professor Jeffrey Cooley has argued that, in many myths, Inanna's movements may correspond with the movements of the planet Venus in the sky.[154] The discontinuous movements of Venus relate to both mythology as well as Inanna's dual nature.[154] In Inanna's Descent to the Underworld, unlike any other deity, Inanna is able to descend into the netherworld and return to the heavens. The planet Venus appears to make a similar descent, setting in the West and then rising again in the East.[154] An introductory hymn describes Inanna leaving the heavens and heading for Kur, what could be presumed to be, the mountains, replicating the rising and setting of Inanna to the West.[154] In Inanna and Shukaletuda and Inanna's Descent into the Underworld appear to parallel the motion of the planet Venus.[154] In Inanna and Shukaletuda, Shukaletuda is described as scanning the heavens in search of Inanna, possibly searching the eastern and western horizons.[194] In the same myth, while searching for her attacker, Inanna herself makes several movements that correspond with the movements of Venus in the sky.[154]

Classical poets such as Homer, Sappho, Ovid and Virgil spoke of the star and its light.[195] Poets such as William Blake, Robert Frost, Letitia Elizabeth Landon, Alfred Lord Tennyson and William Wordsworth wrote odes to it.[196]

In Chinese the planet is called Jīn-xīng (金星), the golden planet of the metal element. In India Shukra Graha ("the planet Shukra") which is named after a powerful saint Shukra. Shukra which is used in Indian Vedic astrology[197] means "clear, pure" or "brightness, clearness" in Sanskrit. One of the nine Navagraha, it is held to affect wealth, pleasure and reproduction; it was the son of Bhrgu, preceptor of the Daityas, and guru of the Asuras.[198] The word Shukra is also associated with semen, or generation. Venus is known as Kejora in Indonesian and Malaysian Malay. Modern Chinese, Japanese and Korean cultures refer to the planet literally as the "metal star" (金星), based on the Five elements.[199][200][201]

The Maya considered Venus to be the most important celestial body after the Sun and Moon. They called it Chac ek,[202] or Noh Ek', "the Great Star".[203] The cycles of Venus were important to their calendar.

The Ancient Egyptians and Greeks believed Venus to be two separate bodies, a morning star and an evening star. The Egyptians knew the morning star as Tioumoutiri and the evening star as Ouaiti.[204] The Greeks used the names Phōsphoros (Φωσϕόρος), meaning "light-bringer" (whence the element phosphorus; alternately Ēōsphoros (Ἠωσϕόρος), meaning "dawn-bringer"), for the morning star, and Hesperos (Ἕσπερος), meaning "Western one", for the evening star.[205] Though by the Roman era they were recognized as one celestial object, known as "the star of Venus", the traditional two Greek names continued to be used, though usually translated to Latin as Lūcifer and Vesper.[205][206]

Modern fiction

With the invention of the telescope, the idea that Venus was a physical world and possible destination began to take form.

The impenetrable Venusian cloud cover gave science fiction writers free rein to speculate on conditions at its surface; all the more so when early observations showed that not only was it similar in size to Earth, it possessed a substantial atmosphere. Closer to the Sun than Earth, the planet was frequently depicted as warmer, but still habitable by humans.[207] The genre reached its peak between the 1930s and 1950s, at a time when science had revealed some aspects of Venus, but not yet the harsh reality of its surface conditions. Findings from the first missions to Venus showed the reality to be quite different, and brought this particular genre to an end.[208] As scientific knowledge of Venus advanced, science fiction authors tried to keep pace, particularly by conjecturing human attempts to terraform Venus.[209]

Symbol

The astronomical symbol for Venus is the same as that used in biology for the female sex: a circle with a small cross beneath.[210][211] The Venus symbol also represents femininity, and in Western alchemy stood for the metal copper.[210][211] Polished copper has been used for mirrors from antiquity, and the symbol for Venus has sometimes been understood to stand for the mirror of the goddess although that is not its true origin.[210][211]

Habitability

Speculation on the possibility of life on Venus's surface decreased significantly after the early 1960s, when it became clear that the conditions are extreme compared to those on Earth. Venus's extreme temperature and atmospheric pressure make water-based life as currently known unlikely.

Some scientists have speculated that thermoacidophilic extremophile microorganisms might exist in the cooler, acidic upper layers of the Venusian atmosphere.[212][213][214] Such speculations go back to 1967, when Carl Sagan and Harold J. Morowitz suggested in a Nature article that tiny objects detected in Venus's clouds might be organisms similar to Earth's bacteria (which are of approximately the same size):

While the surface conditions of Venus make the hypothesis of life there implausible, the clouds of Venus are a different story altogether. As was pointed out some years ago, water, carbon dioxide and sunlight—the prerequisites for photosynthesis—are plentiful in the vicinity of the clouds.[215]

The atmospheric pressure and temperature fifty kilometres above the surface are similar to those at Earth's surface. This has led to proposals to use aerostats (lighter-than-air balloons) for initial exploration and ultimately for permanent "floating cities" in the Venusian atmosphere.[216] Among the many engineering challenges are the dangerous amounts of sulfuric acid at these heights.[216]

In August 2019, astronomers led by Yeon Joo Lee reported that newly discovered long-term pattern of absorbance and albedo changes in the atmosphere of the planet Venus are caused by "unknown absorbers", which may be chemicals or even large colonies of microorganisms high up in the atmosphere of the planet.[217] Their light absorbance is almost identical to that of micro-organisms in Earth's clouds.[93] Similar conclusions have been reached by other studies.[218][219]

In September 2020, a team of astronomers led by Jane Greaves from Cardiff University announced the likely detection of phosphine, a gas not known to be produced by any known chemical processes on the Venusian surface or atmosphere, in the upper levels of the planet's clouds.[220][221][222][223][224] One proposed source for this phosphine is living organisms.[27] The phosphine was detected at heights of at least 30 miles above the surface, and primarily at mid-latitudes with none detected at the poles. The discovery prompted NASA administrator Jim Bridenstine to publicly call for a new focus on the study of Venus, describing the phosphine find as "the most significant development yet in building the case for life off Earth".[225][226]

A statement was published on October 5, 2020 by the organizing committee of the International Astronomical Union's commission F3 on astrobiology, in which the authors of the September 2020 paper about phosphine were accused of unethical behaviour, and criticized for being unscientific and misleading the public.[227][228] Members of that commission have since distanced themselves from the IAU statement, claiming that it had been published without their knowledge or approval.[229][230] The statement was removed from the IAU website shortly thereafter. The IAU's media contact Lars Lindberg Christensen stated that IAU did not agree with the content of the letter, and that it had been published by a group within the F3 commission, not IAU itself.[231]

Subsequent analysis of the data-processing used to identify phosphine in the atmosphere of Venus has raised concerns that the detection-line may be an artefact. The use of a 12th-order polynomial fit may have amplified signal-noise and generated a false reading. Observations of the atmosphere of Venus at other parts of the electromagnetic spectrum in which a phosphine absorption line would be expected did not detect phosphine.[28]

See also

Template:Wikipedia books

Notes

  1. ^ Misstated as "Ganiki Chasma" in the press release and scientific publication.[55]
  2. ^ It is important to be clear about the meaning of 'closeness'. In the astronomical literature, the term 'closest planets' often means 'the two planets that approach each other most closely'. In other words, the orbits of the two planets approach each other most closely. However, this does not mean that the two planets are closest over time. Essentially because Mercury is closer to the Sun than Venus, Mercury spends more time in proximity to Earth; it could, therefore, be said that Mercury is the planet that is 'closest to Earth when averaged over time'. However, using this time-average definition of 'closeness', it turns out that Mercury is the closest planet to all other planets in the solar system. For that reason, arguably, the proximity-definition is not particularly helpful. An episode of the BBC Radio 4 programme 'More or Less' explains the different notions of proximity well.[117]
  3. ^ Several claims of transit observations made by medieval Islamic astronomers have been shown to be sunspots.[165] Avicenna did not record the date of his observation. There was a transit of Venus within his lifetime, on 24 May 1032, although it is questionable whether it would have been visible from his location.[166]
  1. ^ This photograph was taken by the Television Photography Experiment aboard Mariner 10 during its February 1974 flyby. This particular processing of the image was published in June 2020. The entire planet is covered by a thick atmosphere which obscures its surface with thick sulfuric acid clouds.

References

  1. ^ "Venusian". Lexico UK English Dictionary. Oxford University Press. n.d.
    "Venusian". Merriam-Webster.com Dictionary. Merriam-Webster.
  2. ^ "Cytherean". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  3. ^ "Venerean, Venerian". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  4. ^ a b c d e f g h i j k l m Williams, David R. (15 April 2005). "Venus Fact Sheet". NASA. Archived from the original on 4 March 2016. Retrieved 12 October 2007.
  5. ^ Yeomans, Donald K. "HORIZONS Web-Interface for Venus (Major Body=2)". JPL Horizons On-Line Ephemeris System.—Select "Ephemeris Type: Orbital Elements", "Time Span: 2000-01-01 12:00 to 2000-01-02". ("Target Body: Venus" and "Center: Sun" should be defaulted to.) Results are instantaneous osculating values at the precise J2000 epoch.
  6. ^ a b Simon, J.L.; Bretagnon, P.; Chapront, J.; Chapront-Touzé, M.; Francou, G.; Laskar, J. (February 1994). "Numerical expressions for precession formulae and mean elements for the Moon and planets". Astronomy and Astrophysics. 282 (2): 663–683. Bibcode:1994A&A...282..663S.
  7. ^ "The MeanPlane (Invariable plane) of the Solar System passing through the barycenter". 3 April 2009. Archived from the original on 17 April 2012. Retrieved 10 April 2009. (produced with Solex 10 (Archived 20 December 2008 at the Wayback Machine) written by Aldo Vitagliano; see also Invariable plane)
  8. ^ a b Seidelmann, P. Kenneth; Archinal, Brent A.; A'Hearn, Michael F.; et al. (2007). "Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006". Celestial Mechanics and Dynamical Astronomy. 98 (3): 155–180. Bibcode:2007CeMDA..98..155S. doi:10.1007/s10569-007-9072-y.
  9. ^ Konopliv, A. S.; Banerdt, W. B.; Sjogren, W. L. (May 1999). "Venus Gravity: 180th Degree and Order Model" (PDF). Icarus. 139 (1): 3–18. Bibcode:1999Icar..139....3K. CiteSeerX 10.1.1.524.5176. doi:10.1006/icar.1999.6086. Archived from the original (PDF) on 26 May 2010.
  10. ^ "Planets and Pluto: Physical Characteristics". NASA. 5 November 2008. Retrieved 26 August 2015.
  11. ^ "Report on the IAU/IAG Working Group on cartographic coordinates and rotational elements of the planets and satellites". International Astronomical Union. 2000. Retrieved 12 April 2007.
  12. ^ Mallama, Anthony; Krobusek, Bruce; Pavlov, Hristo (2017). "Comprehensive wide-band magnitudes and albedos for the planets, with applications to exo-planets and Planet Nine". Icarus. 282: 19–33. arXiv:1609.05048. Bibcode:2017Icar..282...19M. doi:10.1016/j.icarus.2016.09.023. S2CID 119307693.
  13. ^ Haus, R.; et al. (July 2016). "Radiative energy balance of Venus based on improved models of the middle and lower atmosphere" (PDF). Icarus. 272: 178–205. Bibcode:2016Icar..272..178H. doi:10.1016/j.icarus.2016.02.048.
  14. ^ a b Mallama, Anthony; Hilton, James L. (October 2018). "Computing apparent planetary magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809.
  15. ^ Lawrence, Pete (2005). "In Search of the Venusian Shadow". Digitalsky.org.uk. Archived from the original on 11 June 2012. Retrieved 13 June 2012.
  16. ^ Walker, John. "Viewing Venus in Broad Daylight". Fourmilab Switzerland. Retrieved 19 April 2017.
  17. ^ a b "Venus: Facts & Figures". NASA. Archived from the original on 29 September 2006. Retrieved 12 April 2007.
  18. ^ Castro, Joseph (3 February 2015). "What Would It Be Like to Live on Venus?". Space.com. Retrieved 15 March 2018.
  19. ^ "Moons". NASA Solar System Exploration. Retrieved 26 August 2019.
  20. ^ a b Hashimoto, G. L.; Roos-Serote, M.; Sugita, S.; Gilmore, M. S.; Kamp, L. W.; Carlson, R. W.; Baines, K. H. (2008). "Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data". Journal of Geophysical Research: Planets. 113 (E9): E00B24. Bibcode:2008JGRE..113.0B24H. doi:10.1029/2008JE003134. S2CID 45474562.
  21. ^ Shiga, David (10 October 2007). "Did Venus's ancient oceans incubate life?". New Scientist.
  22. ^ Jakosky, Bruce M. (1999). "Atmospheres of the Terrestrial Planets". In Beatty, J. Kelly; Petersen, Carolyn Collins; Chaikin, Andrew (eds.). The New Solar System (4th ed.). Boston: Sky Publishing. pp. 175–200. ISBN 978-0-933346-86-4. OCLC 39464951.
  23. ^ "Caught in the wind from the Sun". European Space Agency. 28 November 2007. Retrieved 12 July 2008.
  24. ^ Evans, James (1998). The History and Practice of Ancient Astronomy. Oxford University Press. pp. 296–7. ISBN 978-0-19-509539-5. Retrieved 4 February 2008.
  25. ^ Drake, Nadia (14 September 2020). "Possible sign of life on Venus stirs up heated debate". National Geographic. Retrieved 14 September 2020.
  26. ^ Greaves, J.S.; Richards, A.M.S.; Bains, W.; et al. (2020). "Phosphine gas in the cloud decks of Venus". Nature Astronomy. arXiv:2009.06593. Bibcode:2020NatAs.tmp..178G. doi:10.1038/s41550-020-1174-4. S2CID 221655755. Retrieved 14 September 2020.{{cite journal}}: CS1 maint: bibcode (link)
  27. ^ a b Sample, Ian (14 September 2020). "Scientists find gas linked to life in atmosphere of Venus". The Guardian. Retrieved 16 September 2020.
  28. ^ a b Plait, Phil. "Update: Life Above Hell? Serious doubt cast on Venus phosphine finding". Syfy.com. Syfy. Retrieved 26 October 2020.
  29. ^ Snellen, I. A. G.; Guzman-Ramirez, L.; Hogerheijde, M. R.; Hygate, A. P. S.; van der Tak, F. F. S. (2020), Re-analysis of the 267-GHz ALMA observations of Venus No statistically significant detection of phosphine, arXiv:2010.09761
  30. ^ Thompson, M. A. (2020), The statistical reliability of 267 GHz JCMT observations of Venus: No significant evidence for phosphine absorption, arXiv:2010.15188
  31. ^ Villanueva, Geronimo; Cordiner, Martin; Irwin, Patrick; Imke de Pater; Butler, Bryan; Gurwell, Mark; Milam, Stefanie; Nixon, Conor; Luszcz-Cook, Statia; Wilson, Colin; Kofman, Vincent; Liuzzi, Giuliano; Faggi, Sara; Fauchez, Thomas; Lippi, Manuela; Cosentino, Richard; Thelen, Alexander; Moullet, Arielle; Hartogh, Paul; Molter, Edward; Charnley, Steve; Arney, Giada; Mandell, Avi; Biver, Nicolas; Vandaele, Ann; Katherine de Kleer; Kopparapu, Ravi (2020), No phosphine in the atmosphere of Venus, arXiv:2010.14305
  32. ^ Lopes, Rosaly M. C.; Gregg, Tracy K. P. (2004). Volcanic worlds: exploring the Solar System's volcanoes. Springer Publishing. p. 61. ISBN 978-3-540-00431-8.
  33. ^ "Venus". Encyclopedia of Science. Retrieved 27 September 2020.
  34. ^ Mueller, Nils (2014). "Venus Surface and Interior". In Tilman, Spohn; Breuer, Doris; Johnson, T. V. (eds.). Encyclopedia of the Solar System (3rd ed.). Oxford: Elsevier Science & Technology. ISBN 978-0-12-415845-0. {{cite book}}: External link in |chapterurl= (help); Unknown parameter |chapterurl= ignored (|chapter-url= suggested) (help)
  35. ^ Esposito, Larry W. (9 March 1984). "Sulfur Dioxide: Episodic Injection Shows Evidence for Active Venus Volcanism". Science. 223 (4640): 1072–1074. Bibcode:1984Sci...223.1072E. doi:10.1126/science.223.4640.1072. PMID 17830154. S2CID 12832924.
  36. ^ Bullock, Mark A.; Grinspoon, David H. (March 2001). "The Recent Evolution of Climate on Venus" (PDF). Icarus. 150 (1): 19–37. Bibcode:2001Icar..150...19B. CiteSeerX 10.1.1.22.6440. doi:10.1006/icar.2000.6570. Archived from the original (PDF) on 23 October 2003.
  37. ^ Basilevsky, Alexander T.; Head, James W. III (1995). "Global stratigraphy of Venus: Analysis of a random sample of thirty-six test areas". Earth, Moon, and Planets. 66 (3): 285–336. Bibcode:1995EM&P...66..285B. doi:10.1007/BF00579467. S2CID 21736261.
  38. ^ Jones, Tom; Stofan, Ellen (2008). Planetology: Unlocking the Secrets of the Solar System. National Geographic Society. p. 74. ISBN 978-1-4262-0121-9.
  39. ^ Kaufmann, W. J. (1994). Universe. New York: W. H. Freeman. p. 204. ISBN 978-0-7167-2379-0.
  40. ^ a b c d Nimmo, F.; McKenzie, D. (1998). "Volcanism and Tectonics on Venus". Annual Review of Earth and Planetary Sciences. 26 (1): 23–53. Bibcode:1998AREPS..26...23N. doi:10.1146/annurev.earth.26.1.23. S2CID 862354.
  41. ^ a b Strom, Robert G.; Schaber, Gerald G.; Dawson, Douglas D. (25 May 1994). "The global resurfacing of Venus". Journal of Geophysical Research. 99 (E5): 10899–10926. Bibcode:1994JGR....9910899S. doi:10.1029/94JE00388.
  42. ^ a b c d Frankel, Charles (1996). Volcanoes of the Solar System. Cambridge University Press. ISBN 978-0-521-47770-3.
  43. ^ Batson, R.M.; Russell J. F. (18–22 March 1991). "Naming the Newly Found Landforms on Venus" (PDF). Proceedings of the Lunar and Planetary Science Conference XXII. Houston, Texas. p. 65. Retrieved 12 July 2009. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  44. ^ a b Carolynn Young, ed. (1 August 1990). The Magellan Venus Explorer's Guide. California: Jet Propulsion Laboratory. p. 93. Retrieved 13 January 2016.
  45. ^ Davies, M. E.; Abalakin, V. K.; Bursa, M.; Lieske, J. H.; Morando, B.; Morrison, D.; Seidelmann, P. K.; Sinclair, A. T.; Yallop, B.; Tjuflin, Y. S. (1994). "Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites". Celestial Mechanics and Dynamical Astronomy. 63 (2): 127–148. Bibcode:1996CeMDA..63..127D. doi:10.1007/BF00693410. S2CID 189850694.
  46. ^ "USGS Astrogeology: Rotation and pole position for the Sun and planets (IAU WGCCRE)". United States Geological Survey. JPL Publication 90-24. Archived from the original on 24 October 2011. Retrieved 22 October 2009.
  47. ^ Carolynn Young, ed. (1 August 1990). The Magellan Venus Explorer's Guide. California: Jet Propulsion Laboratory. pp. 99–100. Retrieved 13 January 2016.
  48. ^ Karttunen, Hannu; Kroger, P.; Oja, H.; Poutanen, M.; Donner, K. J. (2007). Fundamental Astronomy. Springer. p. 162. ISBN 978-3-540-34143-7.
  49. ^ Bauer, Markus (3 December 2012). "Have Venusian volcanoes been caught in the act?". European Space Agency. Archived from the original on 3 November 2013. Retrieved 20 June 2015.
  50. ^ Glaze, Lori S. (August 1999). "Transport of SO2 by explosive volcanism on Venus". Journal of Geophysical Research. 104 (E8): 18899–18906. Bibcode:1999JGR...10418899G. doi:10.1029/1998JE000619. {{cite journal}}: templatestyles stripmarker in |title= at position 14 (help)
  51. ^ Marcq, Emmanuel; Bertaux, Jean-Loup; Montmessin, Franck; Belyaev, Denis (January 2013). "Variations of sulfur dioxide at the cloud top of Venus's dynamic atmosphere". Nature Geoscience. 6 (1): 25–28. Bibcode:2013NatGe...6...25M. doi:10.1038/ngeo1650. S2CID 59323909.
  52. ^ Hall, Sannon (9 January 2020). "Volcanoes on Venus Might Still Be Smoking - Planetary science experiments on Earth suggest that the sun's second planet might have ongoing volcanic activity". The New York Times. Retrieved 10 January 2020.
  53. ^ Filiberto, Justin (3 January 2020). "Present-day volcanism on Venus as evidenced from weathering rates of olivine". Science. 6 (1): eaax7445. Bibcode:2020SciA....6.7445F. doi:10.1126/sciadv.aax7445. PMC 6941908. PMID 31922004.
  54. ^ "Ganis Chasma". Gazetteer of Planetary Nomenclature. USGS Astrogeology Science Center. Archived from the original on 14 December 2016. Retrieved 19 June 2015.
  55. ^ a b Lakdawalla, Emily (18 June 2015). "Transient hot spots on Venus: Best evidence yet for active volcanism". The Planetary Society. Retrieved 20 June 2015.
  56. ^ "Hot lava flows discovered on Venus". European Space Agency. 18 June 2015. Archived from the original on 19 June 2015. Retrieved 20 June 2015.
  57. ^ Shalygin, E. V.; Markiewicz, W. J.; Basilevsky, A. T.; Titov, D. V.; Ignatiev, N. I.; Head, J. W. (17 June 2015). "Active volcanism on Venus in the Ganiki Chasma rift zone". Geophysical Research Letters. 42 (12): 4762–4769. Bibcode:2015GeoRL..42.4762S. doi:10.1002/2015GL064088. S2CID 16309185.
  58. ^ Romeo, I.; Turcotte, D. L. (2009). "The frequency-area distribution of volcanic units on Venus: Implications for planetary resurfacing" (PDF). Icarus. 203 (1): 13–19. Bibcode:2009Icar..203...13R. doi:10.1016/j.icarus.2009.03.036.
  59. ^ Herrick, R. R.; Phillips, R. J. (1993). "Effects of the Venusian atmosphere on incoming meteoroids and the impact crater population". Icarus. 112 (1): 253–281. Bibcode:1994Icar..112..253H. doi:10.1006/icar.1994.1180.
  60. ^ Morrison, David; Owens, Tobias C. (2003). The Planetary System (3rd ed.). San Francisco: Benjamin Cummings. ISBN 978-0-8053-8734-6.
  61. ^ Helbert, Jörn; Müller, Nils; Kostama, Petri; Marinangeli, Lucia; Piccioni, Giuseppe; Drossart, Pierre (2008). "Surface brightness variations seen by VIRTIS on Venus Express and implications for the evolution of the Lada Terra region, Venus". Geophysical Research Letters. 35 (11): L11201. Bibcode:2008GeoRL..3511201H. doi:10.1029/2008GL033609. ISSN 1944-8007.
  62. ^ Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne (1 November 2017). "Venus Surface Composition Constrained by Observation and Experiment". Space Science Reviews. 212 (3): 1511–1540. Bibcode:2017SSRv..212.1511G. doi:10.1007/s11214-017-0370-8. ISSN 1572-9672. S2CID 126225959.
  63. ^ Goettel, K. A.; Shields, J. A.; Decker, D. A. (16–20 March 1981). "Density constraints on the composition of Venus". Proceedings of the Lunar and Planetary Science Conference. Houston, TX: Pergamon Press. pp. 1507–1516. Bibcode:1982LPSC...12.1507G. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  64. ^ Faure, Gunter; Mensing, Teresa M. (2007). Introduction to planetary science: the geological perspective. Springer eBook collection. Springer. p. 201. ISBN 978-1-4020-5233-0.
  65. ^ Aitta, A. (April 2012), "Venus' internal structure, temperature and core composition", Icarus, 218 (2): 967–974, Bibcode:2012Icar..218..967A, doi:10.1016/j.icarus.2012.01.007, retrieved 17 January 2016.
  66. ^ Nimmo, F. (2002). "Crustal analysis of Venus from Magellan satellite observations at Atalanta Planitia, Beta Regio, and Thetis Regio". Geology. 30 (11): 987–990. Bibcode:2002Geo....30..987N. doi:10.1130/0091-7613(2002)030<0987:WDVLAM>2.0.CO;2. ISSN 0091-7613. S2CID 13293506.
  67. ^ Taylor, Fredric W. (2014). "Venus: Atmosphere". In Tilman, Spohn; Breuer, Doris; Johnson, T. V. (eds.). Encyclopedia of the Solar System. Oxford: Elsevier Science & Technology. ISBN 978-0-12-415845-0. Retrieved 12 January 2016.
  68. ^ "Venus". Case Western Reserve University. 13 September 2006. Archived from the original on 26 April 2012. Retrieved 21 December 2011.
  69. ^ Lewis, John S. (2004). Physics and Chemistry of the Solar System (2nd ed.). Academic Press. p. 463. ISBN 978-0-12-446744-6.
  70. ^ Prockter, Louise (2005). "Ice in the Solar System" (PDF). Johns Hopkins APL Technical Digest. 26 (2): 175–188. S2CID 17893191. Archived from the original (PDF) on 11 September 2006. Retrieved 27 July 2009.
  71. ^ Halliday, Alex N. (15 March 2013). "The origins of volatiles in the terrestrial planets". Geochimica et Cosmochimica Acta. 105: 146–171. Bibcode:2013GeCoA.105..146H. doi:10.1016/j.gca.2012.11.015. ISSN 0016-7037.
  72. ^ Owen, Tobias; Bar-Nun, Akiva; Kleinfeld, Idit (July 1992). "Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth and Mars". Nature. 358 (6381): 43–46. Bibcode:1992Natur.358...43O. doi:10.1038/358043a0. ISSN 1476-4687. PMID 11536499. S2CID 4357750.
  73. ^ Pepin, Robert O. (1 July 1991). "On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles". Icarus. 92 (1): 2–79. Bibcode:1991Icar...92....2P. doi:10.1016/0019-1035(91)90036-S. ISSN 0019-1035.
  74. ^ Namiki, Noriyuki; Solomon, Sean C. (1998). "Volcanic degassing of argon and helium and the history of crustal production on Venus". Journal of Geophysical Research: Planets. 103 (E2): 3655–3677. Bibcode:1998JGR...103.3655N. doi:10.1029/97JE03032. ISSN 2156-2202.
  75. ^ O’Rourke, Joseph G.; Korenaga, Jun (1 November 2015). "Thermal evolution of Venus with argon degassing". Icarus. 260: 128–140. Bibcode:2015Icar..260..128O. doi:10.1016/j.icarus.2015.07.009. ISSN 0019-1035.
  76. ^ Grinspoon, David H.; Bullock, M. A. (October 2007). "Searching for Evidence of Past Oceans on Venus". Bulletin of the American Astronomical Society. 39: 540. Bibcode:2007DPS....39.6109G.
  77. ^ Kasting, J. F. (1988). "Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus". Icarus. 74 (3): 472–494. Bibcode:1988Icar...74..472K. doi:10.1016/0019-1035(88)90116-9. PMID 11538226.
  78. ^ Mullen, Leslie (13 November 2002). "Venusian Cloud Colonies". Astrobiology Magazine. Archived from the original on 16 August 2014.
  79. ^ Landis, Geoffrey A. (July 2003). "Astrobiology: The Case for Venus" (PDF). Journal of the British Interplanetary Society. 56 (7–8): 250–254. Bibcode:2003JBIS...56..250L. NASA/TM—2003-212310. Archived from the original (PDF) on 7 August 2011.
  80. ^ Cockell, Charles S. (December 1999). "Life on Venus". Planetary and Space Science. 47 (12): 1487–1501. Bibcode:1999P&SS...47.1487C. doi:10.1016/S0032-0633(99)00036-7.
  81. ^ Drake, Nadia (14 September 2020). "Possible sign of life on Venus stirs up heated debate". National Geographic. Retrieved 14 September 2020.
  82. ^ Greaves, J.S.; Richards, A.M.S.; Bains, W.; et al. (2020). "Phosphine gas in the cloud decks of Venus". Nature Astronomy. arXiv:2009.06593. Bibcode:2020NatAs.tmp..178G. doi:10.1038/s41550-020-1174-4. S2CID 221655755. Retrieved 14 September 2020.{{cite journal}}: CS1 maint: bibcode (link)
  83. ^ Moshkin, B. E.; Ekonomov, A. P.; Golovin Iu. M. (1979). "Dust on the surface of Venus". Kosmicheskie Issledovaniia (Cosmic Research). 17 (2): 280–285. Bibcode:1979CosRe..17..232M.
  84. ^ a b Krasnopolsky, V. A.; Parshev, V. A. (1981). "Chemical composition of the atmosphere of Venus". Nature. 292 (5824): 610–613. Bibcode:1981Natur.292..610K. doi:10.1038/292610a0. S2CID 4369293.
  85. ^ Krasnopolsky, Vladimir A. (2006). "Chemical composition of Venus atmosphere and clouds: Some unsolved problems". Planetary and Space Science. 54 (13–14): 1352–1359. Bibcode:2006P&SS...54.1352K. doi:10.1016/j.pss.2006.04.019.
  86. ^ W. B. Rossow; A. D. del Genio; T. Eichler (1990). "Cloud-tracked winds from Pioneer Venus OCPP images". Journal of the Atmospheric Sciences. 47 (17): 2053–2084. Bibcode:1990JAtS...47.2053R. doi:10.1175/1520-0469(1990)047<2053:CTWFVO>2.0.CO;2. ISSN 1520-0469.
  87. ^ Normile, Dennis (7 May 2010). "Mission to probe Venus's curious winds and test solar sail for propulsion". Science. 328 (5979): 677. Bibcode:2010Sci...328..677N. doi:10.1126/science.328.5979.677-a. PMID 20448159.
  88. ^ Lorenz, Ralph D.; Lunine, Jonathan I.; Withers, Paul G.; McKay, Christopher P. (2001). "Titan, Mars and Earth: Entropy Production by Latitudinal Heat Transport" (PDF). Ames Research Center, University of Arizona Lunar and Planetary Laboratory. Retrieved 21 August 2007.
  89. ^ "Interplanetary Seasons". NASA. Archived from the original on 16 October 2007. Retrieved 21 August 2007.
  90. ^ Basilevsky A. T.; Head J. W. (2003). "The surface of Venus". Reports on Progress in Physics. 66 (10): 1699–1734. Bibcode:2003RPPh...66.1699B. doi:10.1088/0034-4885/66/10/R04. S2CID 13338382.
  91. ^ McGill, G. E.; Stofan, E. R.; Smrekar, S. E. (2010). "Venus tectonics". In T. R. Watters; R. A. Schultz (eds.). Planetary Tectonics. Cambridge University Press. pp. 81–120. ISBN 978-0-521-76573-2.
  92. ^ Otten, Carolyn Jones (2004). ""Heavy metal" snow on Venus is lead sulfide". Washington University in St Louis. Retrieved 21 August 2007.
  93. ^ a b Lee, Yeon Joo; et al. (26 August 2019). "Long-term Variations of Venus's 365 nm Albedo Observed by Venus Express, Akatsuki, MESSENGER, and the Hubble Space Telescope". The Astronomical Journal. 158 (3): 126–152. arXiv:1907.09683. Bibcode:2019AJ....158..126L. doi:10.3847/1538-3881/ab3120.
  94. ^ a b Lorenz, Ralph D. (20 June 2018). "Lightning detection on Venus: a critical review". Progress in Earth and Planetary Science. 5 (1): 34. Bibcode:2018PEPS....5...34L. doi:10.1186/s40645-018-0181-x. ISSN 2197-4284.
  95. ^ Kranopol'skii, V. A. (1980). "Lightning on Venus according to Information Obtained by the Satellites Venera 9 and 10". Cosmic Research. 18 (3): 325–330. Bibcode:1980CosRe..18..325K.
  96. ^ a b Russell, C. T.; Phillips, J. L. (1990). "The Ashen Light". Advances in Space Research. 10 (5): 137–141. Bibcode:1990AdSpR..10..137R. doi:10.1016/0273-1177(90)90174-X.
  97. ^ "Venera 12 Descent Craft". National Space Science Data Center. NASA. Retrieved 10 September 2015.
  98. ^ Russell, C. T.; Zhang, T. L.; Delva, M.; Magnes, W.; Strangeway, R. J.; Wei, H. Y. (November 2007). "Lightning on Venus inferred from whistler-mode waves in the ionosphere" (PDF). Nature. 450 (7170): 661–662. Bibcode:2007Natur.450..661R. doi:10.1038/nature05930. PMID 18046401. S2CID 4418778. Archived from the original (PDF) on 4 March 2016. Retrieved 10 September 2015.
  99. ^ Hand, Eric (November 2007). "European mission reports from Venus". Nature (450): 633–660. doi:10.1038/news.2007.297. S2CID 129514118.
  100. ^ Staff (28 November 2007). "Venus offers Earth climate clues". BBC News. Retrieved 29 November 2007.
  101. ^ "ESA finds that Venus has an ozone layer too". European Space Agency. 6 October 2011. Retrieved 25 December 2011.
  102. ^ "When A Planet Behaves Like A Comet". European Space Agency. 29 January 2013. Retrieved 31 January 2013.
  103. ^ Kramer, Miriam (30 January 2013). "Venus Can Have 'Comet-Like' Atmosphere". Space.com. Retrieved 31 January 2013.
  104. ^ Fukuhara, Tetsuya; Futaguchi, Masahiko; Hashimoto, George L.; et al. (16 January 2017). "Large stationary gravity wave in the atmosphere of Venus". Nature Geoscience. 10 (2): 85–88. Bibcode:2017NatGe..10...85F. doi:10.1038/ngeo2873.
  105. ^ Rincon, Paul (16 January 2017). "Venus wave may be Solar System's biggest". BBC News. Retrieved 17 January 2017.
  106. ^ Chang, Kenneth (16 January 2017). "Venus Smiled, With a Mysterious Wave Across Its Atmosphere". The New York Times. Retrieved 17 January 2017.
  107. ^ "The HITRAN Database". Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics. Retrieved 8 August 2012. HITRAN is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in the atmosphere.
  108. ^ "HITRAN on the Web Information System". V.E. Zuev Institute of Atmospheric Optics. Retrieved 11 August 2012.
  109. ^ Dolginov, Sh.; Eroshenko, E. G.; Lewis, L. (September 1969). "Nature of the Magnetic Field in the Neighborhood of Venus". Cosmic Research. 7: 675. Bibcode:1969CosRe...7..675D.
  110. ^ Kivelson G. M.; Russell, C. T. (1995). Introduction to Space Physics. Cambridge University Press. ISBN 978-0-521-45714-9.
  111. ^ Luhmann, J. G.; Russell, C. T. (1997). "Venus: Magnetic Field and Magnetosphere". In Shirley, J. H.; Fainbridge, R. W. (eds.). Encyclopedia of Planetary Sciences. New York: Chapman and Hall. pp. 905–907. ISBN 978-1-4020-4520-2. {{cite book}}: External link in |chapterurl= (help); Unknown parameter |chapterurl= ignored (|chapter-url= suggested) (help)
  112. ^ Stevenson, D. J. (15 March 2003). "Planetary magnetic fields" (PDF). Earth and Planetary Science Letters. 208 (1–2): 1–11. Bibcode:2003E&PSL.208....1S. doi:10.1016/S0012-821X(02)01126-3.
  113. ^ a b Nimmo, Francis (November 2002). "Why does Venus lack a magnetic field?" (PDF). Geology. 30 (11): 987–990. Bibcode:2002Geo....30..987N. doi:10.1130/0091-7613(2002)030<0987:WDVLAM>2.0.CO;2. ISSN 0091-7613. Retrieved 28 June 2009.
  114. ^ Konopliv, A. S.; Yoder, C. F. (1996). "Venusian k2 tidal Love number from Magellan and PVO tracking data". Geophysical Research Letters. 23 (14): 1857–1860. Bibcode:1996GeoRL..23.1857K. doi:10.1029/96GL01589. Archived from the original on 12 May 2011. Retrieved 12 July 2009.
  115. ^ Svedhem, Håkan; Titov, Dmitry V.; Taylor, Fredric W.; Witasse, Olivier (November 2007). "Venus as a more Earth-like planet". Nature. 450 (7170): 629–632. Bibcode:2007Natur.450..629S. doi:10.1038/nature06432. PMID 18046393. S2CID 1242297.
  116. ^ Donahue, T. M.; Hoffman, J. H.; Hodges, R. R.; Watson, A. J. (1982). "Venus Was Wet: A Measurement of the Ratio of Deuterium to Hydrogen". Science. 216 (4546): 630–633. Bibcode:1982Sci...216..630D. doi:10.1126/science.216.4546.630. ISSN 0036-8075. PMID 17783310. S2CID 36740141.
  117. ^ a b Harford, Tim (11 January 2019). "BBC Radio 4—More or Less, Sugar, Outdoors Play and Planets". BBC. Oliver Hawkins, more or less alumnus and statistical legend, wrote some code for us, which calculated which planet was closest to the Earth on each day for the past 50 years, and then sent the results to David A. Rothery, professor of planetary geosciences at the Open University.
  118. ^ "Venus Close Approaches to Earth as predicted by Solex 11". Archived from the original on 9 August 2012. Retrieved 19 March 2009. Numbers generated by Solex
  119. ^ Squyres, Steven W. (2016). "Venus". Encyclopædia Britannica Online. Retrieved 7 January 2016.
  120. ^ Petit, Gérard; Luzum, Brian (eds.), IERS Conventions (2010), IERS, p. 19
  121. ^ IERS, Useful Constants, IERS
  122. ^ Earl, Michael A., Rotation Speed, Canadian Astronomy, Satellite Tracking and Optical Research (CASTOR)
  123. ^ The equatorial speed of Earth is given as both about 1674.4 km/h and 1669.8 km/h by reliable sources. The simplest way to determine the correct figure is to multiply Earth's radius of 6378137 m (WGS84) and Earth's angular speed, 7.2921150×10−5 rad/s,[120] yielding 465.1011 m/s = 1674.364 km/h. The incorrect figure of 1669.8 km/h is obtained by dividing Earth's equatorial circumference by 24 h. But the correct speed must be relative to inertial space, so the stellar day of 86164.098903691 s/3600 = 23.934472 h (23 h 56 m 4.0989 s) must be used.[121] Thus 2π(6378.137 km)/23.934472 h = 1674.364 km/h.[122]
  124. ^ Bakich, Michael E. (2000). "Rotational velocity (equatorial)". The Cambridge Planetary Handbook. Cambridge University Press. p. 50. ISBN 978-0-521-63280-5. {{cite book}}: External link in |chapterurl= (help); Unknown parameter |chapterurl= ignored (|chapter-url= suggested) (help)
  125. ^ "Could Venus Be Shifting Gear?". Venus Express. European Space Agency. 10 February 2012. Retrieved 7 January 2016.
  126. ^ "Planetary Facts". The Planetary Society. Archived from the original on 11 May 2012. Retrieved 20 January 2016.
  127. ^ a b "Space Topics: Compare the Planets". The Planetary Society. Archived from the original on 18 February 2006. Retrieved 12 January 2016.
  128. ^ Serge Brunier (2002). Solar System Voyage. Translated by Dunlop, Storm. Cambridge University Press. p. 40. ISBN 978-0-521-80724-1.
  129. ^ Correia, Alexandre C. M.; Laskar, Jacques; De Surgy, Olivier Néron (May 2003). "Long-Term Evolution of the Spin of Venus, Part I: Theory" (PDF). Icarus. 163 (1): 1–23. Bibcode:2003Icar..163....1C. doi:10.1016/S0019-1035(03)00042-3.
  130. ^ Laskar, Jacques; De Surgy, Olivier Néron (2003). "Long-Term Evolution of the Spin of Venus, Part II: Numerical Simulations" (PDF). Icarus. 163 (1): 24–45. Bibcode:2003Icar..163...24C. doi:10.1016/S0019-1035(03)00043-5.
  131. ^ Gold, T.; Soter, S. (1969). "Atmospheric Tides and the Resonant Rotation of Venus". Icarus. 11 (3): 356–66. Bibcode:1969Icar...11..356G. doi:10.1016/0019-1035(69)90068-2.
  132. ^ Shapiro, I. I.; Campbell, D. B.; De Campli, W. M. (June 1979). "Nonresonance Rotation of Venus". Astrophysical Journal. 230: L123–L126. Bibcode:1979ApJ...230L.123S. doi:10.1086/182975.
  133. ^ a b Sheppard, Scott S.; Trujillo, Chadwick A. (July 2009). "A Survey for Satellites of Venus". Icarus. 202 (1): 12–16. arXiv:0906.2781. Bibcode:2009Icar..202...12S. doi:10.1016/j.icarus.2009.02.008. S2CID 15252548.
  134. ^ Mikkola, S.; Brasser, R.; Wiegert, P.; Innanen, K. (July 2004). "Asteroid 2002 VE68: A Quasi-Satellite of Venus". Monthly Notices of the Royal Astronomical Society. 351 (3): L63. Bibcode:2004MNRAS.351L..63M. doi:10.1111/j.1365-2966.2004.07994.x.
  135. ^ De la Fuente Marcos, Carlos; De la Fuente Marcos, Raúl (November 2012). "On the Dynamical Evolution of 2002 VE68". Monthly Notices of the Royal Astronomical Society. 427 (1): 728–39. arXiv:1208.4444. Bibcode:2012MNRAS.427..728D. doi:10.1111/j.1365-2966.2012.21936.x. S2CID 118535095.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  136. ^ De la Fuente Marcos, Carlos; De la Fuente Marcos, Raúl (June 2013). "Asteroid 2012 XE133: A Transient Companion to Venus". Monthly Notices of the Royal Astronomical Society. 432 (2): 886–93. arXiv:1303.3705. Bibcode:2013MNRAS.432..886D. doi:10.1093/mnras/stt454. S2CID 118661720.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  137. ^ Musser, George (10 October 2006). "Double Impact May Explain Why Venus Has No Moon". Scientific American. Retrieved 7 January 2016.
  138. ^ Tytell, David (10 October 2006). "Why Doesn't Venus Have a Moon?". Sky & Telescope. Retrieved 7 January 2016.
  139. ^ Dickinson, Terrence (1998). NightWatch: A Practical Guide to Viewing the Universe. Buffalo, NY: Firefly Books. p. 134. ISBN 978-1-55209-302-3. Retrieved 12 January 2016.
  140. ^ Mallama, A. (2011). "Planetary magnitudes". Sky & Telescope. 121 (1): 51–56.
  141. ^ Flanders, Tony (25 February 2011). "See Venus in Broad Daylight!". Sky & Telescope. Retrieved 11 January 2016.
  142. ^ a b Espenak, Fred (1996). "Venus: Twelve year planetary ephemeris, 1995–2006". NASA Reference Publication 1349. NASA/Goddard Space Flight Center. Archived from the original on 17 August 2000. Retrieved 20 June 2006.
  143. ^ "Transit of Venus". History. University of Central Lancashire. Archived from the original on 30 July 2012. Retrieved 14 May 2012.
  144. ^ Boyle, Alan (5 June 2012). "Venus transit: A last-minute guide". NBC News. Archived from the original on 18 June 2013. Retrieved 11 January 2016.
  145. ^ Espenak, Fred (2004). "Transits of Venus, Six Millennium Catalog: 2000 BCE to 4000 CE". Transits of the Sun. NASA. Retrieved 14 May 2009.
  146. ^ Kollerstrom, Nicholas (1998). "Horrocks and the Dawn of British Astronomy". University College London. Retrieved 11 May 2012.
  147. ^ Hornsby, T. (1771). "The quantity of the Sun's parallax, as deduced from the observations of the transit of Venus on June 3, 1769". Philosophical Transactions of the Royal Society. 61: 574–579. doi:10.1098/rstl.1771.0054. S2CID 186212060.
  148. ^ Woolley, Richard (1969). "Captain Cook and the Transit of Venus of 1769". Notes and Records of the Royal Society of London. 24 (1): 19–32. doi:10.1098/rsnr.1969.0004. ISSN 0035-9149. JSTOR 530738. S2CID 59314888.
  149. ^ Baez, John (4 January 2014). "The Pentagram of Venus". Azimuth. Archived from the original on 14 December 2015. Retrieved 7 January 2016.
  150. ^ Chatfield, Chris (2010). "The Solar System with the naked eye". The Gallery of Natural Phenomena. Retrieved 19 April 2017.
  151. ^ Gaherty, Geoff (26 March 2012). "Planet Venus Visible in Daytime Sky Today: How to See It". Space.com. Retrieved 19 April 2017.
  152. ^ Goines, David Lance (18 October 1995). "Inferential Evidence for the Pre-telescopic Sighting of the Crescent Venus". Goines.net. Retrieved 19 April 2017.
  153. ^ Baum, R. M. (2000). "The enigmatic ashen light of Venus: an overview". Journal of the British Astronomical Association. 110: 325. Bibcode:2000JBAA..110..325B.
  154. ^ a b c d e f g h i j Cooley, Jeffrey L. (2008). "Inana and Šukaletuda: A Sumerian Astral Myth". KASKAL. 5: 161–172. ISSN 1971-8608.
  155. ^ Sachs, A. (1974). "Babylonian Observational Astronomy". Philosophical Transactions of the Royal Society of London. 276 (1257): 43–50. Bibcode:1974RSPTA.276...43S. doi:10.1098/rsta.1974.0008. S2CID 121539390.
  156. ^ Hobson, Russell (2009). The Exact Transmission of Texts in the First Millennium B.C.E. (PDF) (Ph.D.). University of Sydney, Department of Hebrew, Biblical and Jewish Studies.
  157. ^ Enn Kasak, Raul Veede. Understanding Planets in Ancient Mesopotamia. Folklore Vol. 16. Mare Kõiva & Andres Kuperjanov, Eds. ISSN 1406-0957
  158. ^ Heimpel, W. 1982. "A catalog of Near Eastern Venus deities." Syro-Mesopotamian Studies 4/3: 9-22.
  159. ^ Needham, Joseph (1959). Science and Civilisation in China, Volume 3: Mathematics and the Sciences of the Heavens and the Earth. Vol. 3. Cambridge: Cambridge University Press. p. 398. Bibcode:1959scc3.book.....N. ISBN 978-0-521-05801-8. {{cite book}}: |journal= ignored (help)
  160. ^ Pliny the Elder (1991). Natural History II:36–37. translated by John F. Healy. Harmondsworth, Middlesex, UK: Penguin. pp. 15–16.
  161. ^ Burkert, Walter (1972). Lore and Science in Ancient Pythagoreanism. Harvard University Press. p. 307. ISBN 978-0-674-53918-1.
  162. ^ Goldstein, Bernard R. (March 1972). "Theory and Observation in Medieval Astronomy". Isis. 63 (1): 39–47 [44]. Bibcode:1972Isis...63...39G. doi:10.1086/350839. S2CID 120700705.
  163. ^ "AVICENNA viii. Mathematics and Physical Sciences". Encyclopedia Iranica.
  164. ^ S. M. Razaullah Ansari (2002). History of Oriental Astronomy: Proceedings of the Joint Discussion-17 at the 23rd General Assembly of the International Astronomical Union, Organised by the Commission 41 (History of Astronomy), Held in Kyoto, August 25–26, 1997. Springer Science+Business Media. p. 137. ISBN 978-1-4020-0657-9.
  165. ^ J.M. Vaquero; M. Vázquez (2009). The Sun Recorded Through History. Springer Science & Business Media. p. 75. ISBN 978-0-387-92790-9.
  166. ^ Fredrick Kennard. Thought Experiments: Popular Thought Experiments in Philosophy, Physics, Ethics, Computer Science & Mathematics. p. 113. ISBN 978-1-329-00342-2.
  167. ^ Palmieri, Paolo (2001). "Galileo and the discovery of the phases of Venus". Journal for the History of Astronomy. 21 (2): 109–129. Bibcode:2001JHA....32..109P. doi:10.1177/002182860103200202. S2CID 117985979.
  168. ^ Fegley Jr, B (2003). Heinrich D. Holland; Karl K. Turekian (eds.). Venus. Elsevier. pp. 487–507. ISBN 978-0-08-043751-4. {{cite book}}: |work= ignored (help)
  169. ^ Kollerstrom, Nicholas (2004). "William Crabtree's Venus transit observation" (PDF). Proceedings IAU Colloquium No. 196, 2004. 2004: 34–40. Bibcode:2005tvnv.conf...34K. doi:10.1017/S1743921305001249. Retrieved 10 May 2012.
  170. ^ Marov, Mikhail Ya. (2004). D.W. Kurtz (ed.). Mikhail Lomonosov and the discovery of the atmosphere of Venus during the 1761 transit. Proceedings of IAU Colloquium No. 196. Preston, U.K.: Cambridge University Press. pp. 209–219. Bibcode:2005tvnv.conf..209M. doi:10.1017/S1743921305001390.
  171. ^ "Mikhail Vasilyevich Lomonosov". Encyclopædia Britannica Online. Retrieved 12 July 2009.
  172. ^ Russell, H. N. (1899). "The Atmosphere of Venus". Astrophysical Journal. 9: 284–299. Bibcode:1899ApJ.....9..284R. doi:10.1086/140593. S2CID 123671250.
  173. ^ Hussey, T. (1832). "On the Rotation of Venus". Monthly Notices of the Royal Astronomical Society. 2 (11): 78–126. Bibcode:1832MNRAS...2...78H. doi:10.1093/mnras/2.11.78d.
  174. ^ Ross, F. E. (1928). "Photographs of Venus". Astrophysical Journal. 68–92: 57. Bibcode:1928ApJ....68...57R. doi:10.1086/143130.
  175. ^ Slipher, V. M. (1903). "A Spectrographic Investigation of the Rotation Velocity of Venus". Astronomische Nachrichten. 163 (3–4): 35–52. Bibcode:1903AN....163...35S. doi:10.1002/asna.19031630303.
  176. ^ Goldstein, R. M.; Carpenter, R. L. (1963). "Rotation of Venus: Period Estimated from Radar Measurements". Science. 139 (3558): 910–911. Bibcode:1963Sci...139..910G. doi:10.1126/science.139.3558.910. PMID 17743054. S2CID 21133097.
  177. ^ Campbell, D. B.; Dyce, R. B.; Pettengill G. H. (1976). "New radar image of Venus". Science. 193 (4258): 1123–1124. Bibcode:1976Sci...193.1123C. doi:10.1126/science.193.4258.1123. PMID 17792750. S2CID 32590584.
  178. ^ Mitchell, Don (2003). "Inventing The Interplanetary Probe". The Soviet Exploration of Venus. Retrieved 27 December 2007.
  179. ^ Kolirin, Lianne (18 September 2020). "Venus is a Russian planet—say the Russians". CNN. Retrieved 21 September 2020.
  180. ^ Leman, Jennifer (18 September 2020). "Venus Is a Russian Planet ... Says Russia". Popular Mechanics. Retrieved 21 September 2020.
  181. ^ Mayer; McCullough & Sloanaker (January 1958). "Observations of Venus at 3.15-cm Wave Length". The Astrophysical Journal. 127: 1. Bibcode:1958ApJ...127....1M. doi:10.1086/146433.
  182. ^ Jet Propulsion Laboratory (1962). Mariner-Venus 1962 Final Project Report (PDF) (Report). SP-59. NASA.
  183. ^ Mitchell, Don (2003). "Plumbing the Atmosphere of Venus". The Soviet Exploration of Venus. Retrieved 27 December 2007.
  184. ^ "Report on the Activities of the COSPAR Working Group VII". Preliminary Report, COSPAR Twelfth Plenary Meeting and Tenth International Space Science Symposium. Prague, Czechoslovakia: National Academy of Sciences. 11–24 May 1969. p. 94. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  185. ^ Sagdeev, Roald; Eisenhower, Susan (28 May 2008). "United States-Soviet Space Cooperation during the Cold War". Retrieved 19 July 2009.
  186. ^ Colin, L.; Hall, C. (1977). "The Pioneer Venus Program". Space Science Reviews. 20 (3): 283–306. Bibcode:1977SSRv...20..283C. doi:10.1007/BF02186467. S2CID 122107496.
  187. ^ Williams, David R. (6 January 2005). "Pioneer Venus Project Information". NASA/Goddard Space Flight Center. Retrieved 19 July 2009.
  188. ^ Greeley, Ronald; Batson, Raymond M. (2007). Planetary Mapping. Cambridge University Press. p. 47. ISBN 978-0-521-03373-2. Retrieved 19 July 2009.
  189. ^ Hall, Loura (1 April 2016). "Automaton Rover for Extreme Environments (AREE)". NASA. Retrieved 29 August 2017.
  190. ^ Whitney, Charles A. (September 1986). "The Skies of Vincent van Gogh". Art History. 9 (3): 356. doi:10.1111/j.1467-8365.1986.tb00206.x.
  191. ^ Boime, Albert (December 1984). "Van Gogh's Starry Night: A History of Matter and a Matter of History" (PDF). Arts Magazine: 88.
  192. ^ a b Nemet-Nejat, Karen Rhea (1998), Daily Life in Ancient Mesopotamia, Daily Life, Greenwood, p. 203, ISBN 978-0313294976
  193. ^ a b Black, Jeremy; Green, Anthony (1992). Gods, Demons and Symbols of Ancient Mesopotamia: An Illustrated Dictionary. The British Museum Press. pp. 108–109. ISBN 978-0-7141-1705-8.
  194. ^ Cooley, Jeffrey L. (2008). "Inana and Šukaletuda: A Sumerian Astral Myth". KASKAL. 5: 163–164. ISSN 1971-8608.
  195. ^ Aaron J. Atsma. "Eospheros & Hespheros". Theoi.com. Retrieved 15 January 2016.
  196. ^ Dava Sobel (2005). The Planets. Harper Publishing. pp. 53–70. ISBN 978-0-14-200116-5.
  197. ^ Bhalla, Prem P. (2006). Hindu Rites, Rituals, Customs and Traditions: A to Z on the Hindu Way of Life. Pustak Mahal. p. 29. ISBN 978-81-223-0902-7.
  198. ^ Behari, Bepin; Frawley, David (2003). Myths & Symbols of Vedic Astrology (2nd ed.). Lotus Press. pp. 65–74. ISBN 978-0-940985-51-3.
  199. ^ De Groot, Jan Jakob Maria (1912). Religion in China: universism. a key to the study of Taoism and Confucianism. Vol. 10. G. P. Putnam's Sons. p. 300. Retrieved 8 January 2010. {{cite book}}: |work= ignored (help)
  200. ^ Crump, Thomas (1992). The Japanese numbers game: the use and understanding of numbers in modern Japan. Routledge. pp. 39–40. ISBN 978-0415056090. {{cite book}}: |work= ignored (help)
  201. ^ Hulbert, Homer Bezaleel (1909). The passing of Korea. Doubleday, Page & company. p. 426. Retrieved 8 January 2010.
  202. ^ The Book of Chumayel: The Counsel Book of the Yucatec Maya, 1539-1638. Richard Luxton. 1899. pp. 6, 194. ISBN 9780894122446.
  203. ^ Milbrath, Susan (1999). Star Gods of The Mayans : Astronomy in Art, Folklore, and Calendars. Austin, TX: University of Texas Press. pp. 200–204, 383. ISBN 978-0-292-79793-2.
  204. ^ Cattermole, Peter John; Moore, Patrick (1997). Atlas of Venus. Cambridge University Press. p. 9. ISBN 978-0-521-49652-0.
  205. ^ a b "Lucifer" in Encyclopaedia Britannica
  206. ^ Cicero, De Natura Deorum.
  207. ^ Miller, Ron (2003). Venus. Twenty-First Century Books. p. 12. ISBN 978-0-7613-2359-4.
  208. ^ Dick, Steven (2001). Life on Other Worlds: The 20th-Century Extraterrestrial Life Debate. Cambridge University Press. p. 43. ISBN 978-0-521-79912-6.
  209. ^ Seed, David (2005). A Companion to Science Fiction. Blackwell Publishing. pp. 134–135. ISBN 978-1-4051-1218-5.
  210. ^ a b c Stearn, William T. (17 August 1961). "The Male and Female Symbols of Biology". New Scientist (248): 412–413.
  211. ^ a b c Stearn, William T. (May 1968). "The Origin of the Male and Female Symbols of Biology". Taxon. 11 (4): 109–113. doi:10.2307/1217734. JSTOR 1217734. S2CID 87030547.
  212. ^ Clark, Stuart (26 September 2003). "Acidic clouds of Venus could harbour life". New Scientist. Retrieved 30 December 2015.
  213. ^ Redfern, Martin (25 May 2004). "Venus clouds 'might harbour life'". BBC News. Retrieved 30 December 2015.
  214. ^ Dartnell, Lewis R.; Nordheim, Tom Andre; Patel, Manish R.; Mason, Jonathon P.; et al. (September 2015). "Constraints on a potential aerial biosphere on Venus: I. Cosmic rays". Icarus. 257: 396–405. Bibcode:2015Icar..257..396D. doi:10.1016/j.icarus.2015.05.006.
  215. ^ Sagan, Carl; Morowitz, Harold J. (16 September 1967). "Life in the Clouds of Venus?". Nature. doi:10.1038/2161198a0. S2CID 11784372.
  216. ^ a b Landis, Geoffrey A. (2003). "Colonization of Venus". AIP Conference Proceedings. Vol. 654. pp. 1193–1198. doi:10.1063/1.1541418. Archived from the original on 11 July 2012. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  217. ^ Anderson, Paul (3 September 2019). "Could microbes be affecting Venus' climate?". Earth & Sky. Retrieved 3 September 2019.
  218. ^ Lee, Yeon Joo; Jessup, Kandis-Lea; Perez-Hoyos, Santiago; Titov, Dmitrij V.; Lebonnois, Sebastien; Peralta, Javier; Horinouchi, Takeshi; Imamura, Takeshi; Limaye, Sanjay; Marcq, Emmanuel; Takagi, Masahiro; Yamazaki, Atsushi; Yamada, Manabu; Watanabe, Shigeto; Murakami, Shin-ya; Ogohara, Kazunori; McClintock, William M.; Holsclaw, Gregory; Roman, Anthony (26 August 2019). "Long-term Variations of Venus's 365 nm Albedo Observed by Venus Express, Akatsuki, MESSENGER, and the Hubble Space Telescope". The Astronomical Journal. 158 (3): 126. arXiv:1907.09683. Bibcode:2019AJ....158..126L. doi:10.3847/1538-3881/ab3120. S2CID 198179774.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  219. ^ "Hints of life on Venus". The Royal Astronomical Society. 14 September 2020. Retrieved 15 September 2020.
  220. ^ Bains, William; Petkowski, Janusz J.; Seager, Sara; Ranjan, Sukrit; Sousa-Silva, Clara; Rimmer, Paul B.; Zhan, Zhuchang; Greaves, Jane S.; Richards, Anita M. S. (14 September 2020). "Phosphine on Venus Cannot be Explained by Conventional Processes". arXiv:2009.06499 [astro-ph.EP].
  221. ^ Greaves, Jane S.; et al. (14 September 2020). "Phosphine Gas in the Cloud Decks of Venus". Nature Astronomy. arXiv:2009.06593. Bibcode:2020NatAs.tmp..178G. doi:10.1038/s41550-020-1174-4. S2CID 221655755.{{cite journal}}: CS1 maint: bibcode (link)
  222. ^ Drake, Nadia (14 September 2020). "Possible sign of life on Venus stirs up heated debate". National Geographic. National Geographic. Retrieved 14 September 2020.
  223. ^ Perkins, Sid (14 September 2020). "Curious and unexplained". Science. Retrieved 14 September 2020.
  224. ^ Seager, Sara; Petkowski, Janusz J.; Gao, Peter; Bains, William; Bryan, Noelle C.; Ranjan, Sukrit; Greaves, Jane (14 September 2020). "The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere". Astrobiology. arXiv:2009.06474. doi:10.1089/ast.2020.2244. PMID 32787733. S2CID 221127006.
  225. ^ Kooser, Amanda (14 September 2020). "NASA chief calls for prioritizing Venus after surprise find hints at alien life". CNet. Retrieved 14 September 2020.
  226. ^ @JimBridenstine (14 September 2020). "Life on Venus?" (Tweet) – via Twitter.
  227. ^ "Statement from Commission F3 (Astrobiology) of the IAU on Press Reports regarding Detection of Phosphine in Venus" (PDF). www.iau.org. International Astronomical Union - Commission F3 Astrobiology. 5 October 2020. Archived from the original (PDF) on 7 October 2020.
  228. ^ @IAU_org (8 October 2020). "The IAU would like to clarify that a recent statement about the press coverage of the discovery of phosphine in the atmosphere of Venus originated from the Organizing Committee of the IAU Commission F3 and not from the IAU Executive, nor the IAU Commission F3 membership" (Tweet) – via Twitter.
  229. ^ @Mike_Garrett (7 October 2020). "Absolutely shocked & dismayed by this statement from the @IAU_org - as a member of IAU Com F3, I completely disagree - this is how science progresses" (Tweet) – via Twitter.
  230. ^ @ExoCytherean (7 October 2020). "I'm also a member of F3 and I didn't even know about the letter until it was published this morning. How on Earth is the commission publishing statements that claim to represent its membership when they are not even consulted?" (Tweet) – via Twitter.
  231. ^ Amitabh Sinha (8 October 2020). "Discovery that indicated possibility of extra-terrestrial life attacked by group of astrobiologists". indianexpress.com. Retrieved 8 October 2020.

Cartographic resources