Jump to content

Antilinear map: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Adding short description: "Mathematical map" (Shortdesc helper)
Line 16: Line 16:
== See also ==
== See also ==


* [[Fundamental theorem of Hilbert spaces]]
* {{annotated link|Fundamental theorem of Hilbert spaces}}
* {{annotated link|Inner product space}}
* {{annotated link|Riesz representation theorem}}
* {{annotated link|Sesquilinear form}}


== References ==
== References ==

Revision as of 00:55, 5 January 2021

In mathematics, a mapping from a complex vector space to another is said to be antilinear (or conjugate-linear) if

for all and all , where and are the complex conjugates of and respectively. The composite of two antilinear maps is linear. The class of semilinear maps generalizes the class of antilinear maps.

An antilinear map may be equivalently described in terms of the linear map from to the complex conjugate vector space .

Antilinear maps occur in quantum mechanics in the study of time reversal and in spinor calculus, where it is customary to replace the bars over the basis vectors and the components of geometric objects by dots put above the indices.

Anti-dual space

The vector space of all antilinear forms on a vector space X is called the algebraic anti-dual space of X. If X is a topological vector space, then the vector space of all continuous antilinear functionals on X is called the continuous anti-dual space or just the anti-dual space of X.[1]

See also

References

  • Budinich, P. and Trautman, A. The Spinorial Chessboard. Springer-Verlag, 1988. ISBN 0-387-19078-3. (antilinear maps are discussed in section 3.3).
  • Horn and Johnson, Matrix Analysis, Cambridge University Press, 1985. ISBN 0-521-38632-2. (antilinear maps are discussed in section 4.6).
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.

See also

  1. ^ Trèves 2006, pp. 112–123.