Jump to content

Arbelos

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by Angegane (talk | contribs) at 23:05, 5 December 2024 (Properties: clearer exposition for "Area", simpler proof for "Tangents"). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
An arbelos (grey region)
Arbelos sculpture in Kaatsheuvel, Netherlands

In geometry, an arbelos is a plane region bounded by three semicircles with three apexes such that each corner of each semicircle is shared with one of the others (connected), all on the same side of a straight line (the baseline) that contains their diameters.[1]

The earliest known reference to this figure is in Archimedes's Book of Lemmas, where some of its mathematical properties are stated as Propositions 4 through 8.[2] The word arbelos is Greek for 'shoemaker's knife'. The figure is closely related to the Pappus chain.

Properties

Two of the semicircles are necessarily concave, with arbitrary diameters a and b; the third semicircle is convex, with diameter a+b.[1] Let the diameters of the smaller semicircles be BA and AC; then the diameter of the larger semircle is BC.

Some special points on the arbelos.

Area

Let H be the intersection of the larger semicircle with the line perpendicular to BC at A. Then the area of the arbelos is equal to the area of a circle with diameter HA.

Proof: For the proof, reflect the arbelos over the line through the points B and C, and observe that twice the area of the arbelos is what remains when the areas of the two smaller circles (with diameters BA, AC) are subtracted from the area of the large circle (with diameter BC). Since the area of a circle is proportional to the square of the diameter (Euclid's Elements, Book XII, Proposition 2; we do not need to know that the constant of proportionality is π/4), the problem reduces to showing that . The length |BC| equals the sum of the lengths |BA| and |AC|, so this equation simplifies algebraically to the statement that . Thus the claim is that the length of the segment AH is the geometric mean of the lengths of the segments BA and AC. Now (see Figure) the triangle BHC, being inscribed in the semicircle, has a right angle at the point H (Euclid, Book III, Proposition 31), and consequently |HA| is indeed a "mean proportional" between |BA| and |AC| (Euclid, Book VI, Proposition 8, Porism). This proof approximates the ancient Greek argument; Harold P. Boas cites a paper of Roger B. Nelsen[3] who implemented the idea as the following proof without words.[4]

Rectangle

Let D and E be the points where the segments BH and CH intersect the semicircles AB and AC, respectively. The quadrilateral ADHE is actually a rectangle.

Proof: ∠BDA, ∠BHC, and ∠AEC are right angles because they are inscribed in semicircles (by Thales's theorem). The quadrilateral ADHE therefore has three right angles, so it is a rectangle. Q.E.D.

Tangents

The line DE is tangent to semicircle BA at D and semicircle AC at E.

Proof: Since ADHE is a rectangle, the diagonals AH and DE have equal length and bisect each other at their intersection O. Therefore, . Also, since OA is perpendicular to the diameters BA and AC, OA is tangent to both semicircles at the point A. Finally, because the two tangents to a circle from any given exterior point have equal length, it follows that the other tangents from O to semicircles BA and AC are OD and OE respectively.

Archimedes' circles

The altitude AH divides the arbelos into two regions, each bounded by a semicircle, a straight line segment, and an arc of the outer semicircle. The circles inscribed in each of these regions, known as the Archimedes' circles of the arbelos, have the same size.

Variations and generalisations

example of an f-belos

The parbelos is a figure similar to the arbelos, that uses parabola segments instead of half circles. A generalisation comprising both arbelos and parbelos is the f-belos, which uses a certain type of similar differentiable functions.[5]

In the Poincaré half-plane model of the hyperbolic plane, an arbelos models an ideal triangle.

Etymology

The type of shoemaker's knife that gave its name to the figure

The name arbelos comes from Greek ἡ ἄρβηλος he árbēlos or ἄρβυλος árbylos, meaning "shoemaker's knife", a knife used by cobblers from antiquity to the current day, whose blade is said to resemble the geometric figure.

See also

References

  1. ^ a b Weisstein, Eric W. "Arbelos". MathWorld.
  2. ^ Thomas Little Heath (1897), The Works of Archimedes. Cambridge University Press. Proposition 4 in the Book of Lemmas. Quote: If AB be the diameter of a semicircle and N any point on AB, and if semicircles be described within the first semicircle and having AN, BN as diameters respectively, the figure included between the circumferences of the three semicircles is "what Archimedes called arbelos"; and its area is equal to the circle on PN as diameter, where PN is perpendicular to AB and meets the original semicircle in P. ("Arbelos - the Shoemaker's Knife")
  3. ^ Nelsen, R B (2002). "Proof without words: The area of an arbelos". Math. Mag. 75 (2): 144. doi:10.2307/3219152. JSTOR 3219152.
  4. ^ Boas, Harold P. (2006). "Reflections on the Arbelos". The American Mathematical Monthly. 113 (3): 236–249. doi:10.2307/27641891. JSTOR 27641891.
  5. ^ Antonio M. Oller-Marcen: "The f-belos". In: Forum Geometricorum, Volume 13 (2013), pp. 103–111.

Bibliography

  • Media related to Arbelos at Wikimedia Commons
  • The dictionary definition of arbelos at Wiktionary