Jump to content

Elongated triangular orthobicupola

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Dedhert.Jr (talk | contribs) at 14:25, 11 March 2024 (Properties: display="block"). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Elongated triangular orthobicupola
TypeJohnson
J34J35J36
Faces8 triangles
12 squares
Edges36
Vertices18
Vertex configuration
Symmetry group
Propertiesconvex
Net

In geometry, the elongated triangular orthobicupola or cantellated triangular prism is one of the Johnson solids (J35). As the name suggests, it can be constructed by elongating a triangular orthobicupola by inserting a hexagonal prism between its two halves. The resulting solid is superficially similar to the rhombicuboctahedron (one of the Archimedean solids), with the difference that it has threefold rotational symmetry about its axis instead of fourfold symmetry.

Construction

The elongated triangular orthobicupola can be constructed from a hexagonal prism by attaching two regular triangular cupolae to the base of a hexagonal prism, covering the hexagonal faces.[1] This construction process known as elongation, giving the resulting polyhedron has 8 equilateral triangles and 12 squares.[2] A convex polyhedron in which all faces are regular is Johnson solid, and the elongated triangular orthobicupola is one among them, enumerated as 36th Johnson solid [3]

Properties

An elongated triangular orthobicupola with a given edge length has a surface area, by adding the area of all regular faces:[2] Its volume can be calculated by cutting it off into two triangular cupolae and a hexagonal prism with regular faces, and then adding the volumes up:[2]

The elongated triangular orthobicupola forms space-filling honeycombs with tetrahedra and square pyramids.[4]

References

  1. ^ Rajwade, A. R. (2001). Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem. Texts and Readings in Mathematics. Hindustan Book Agency. p. 84–89. doi:10.1007/978-93-86279-06-4. ISBN 978-93-86279-06-4.
  2. ^ a b c Berman, Martin (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR 0290245.
  3. ^ Francis, Darryl (August 2013). "Johnson solids & their acronyms". Word Ways. 46 (3): 177.
  4. ^ "J35 honeycomb".