de Havilland Comet
Template:Infobox Aircraft The British de Havilland Comet first flew in 1949 and is noted as the world's first commercial jet airliner to reach production. The Avro Ashton and the Vickers VC.1 Viking had flown earlier but were experimental models. Early models suffered from catastrophic metal fatigue and the aircraft was redesigned. The Comet 4 series subsequently enjoyed a long and productive career of over 30 years. The Hawker Siddeley Nimrod, the military derivative of the Comet airliner, is still in service. In 2007, the original decades-old airframes were being rebuilt with new wings and engines to produce the Nimrod MRA 4, expected to serve with Britain's Royal Air Force until the 2020s, more than 70 years after the Comet's first flight.
Design and development
During the Second World War, the Brabazon Committee studied Britain's postwar airliner needs. Sir Geoffrey de Havilland, head of the de Havilland company, was a committee member and used his influence and the company's expertise with jets to include mention of the need for a transatlantic jet mailplane called the Type IV or DH.106.[1] British Overseas Airways Corporation (BOAC) found the Type IV's specifications attractive and in December 1945 agreed to buy ten aircraft.
Design work began in 1946 under Ronald Bishop, who had been responsible for the Mosquito fighter-bomber. Several configurations were considered, including twin booms and a swept-wing, tailless design but a more conventional design was eventually chosen and announced as the Comet in December 1947. First deliveries were expected by 1952.
The first flight of a prototype DH.106 Comet lasted 31 minutes on 27 July 1949. The pilot was de Havilland Chief Test Pilot John Cunningham, a famous wartime night-fighter pilot. The aircraft was publicly displayed at the 1949 Farnborough Air Show and then began flight trials. A year later the second prototype made its maiden flight. On 2 April 1951 this aircraft was delivered to the BOAC Comet Unit at Hurn under the registration G-ALZK and carried out 500 flying hours of crew training and a route proving programme.
Technical description
The Comet was a low wing, all metal, four-engine jet aircraft, approximately the length of a small Boeing 737, carrying fewer people in greater comfort. The earliest Comets had 11 rows of seats with four seats to a row in the 1A configuration used by Air France. BOAC used an even roomier arrangement of 36 seats (each with its own ashtray). The galley could serve hot and cold food and drinks and there was a bar. Other amenities included separate men's and women's washrooms. The passenger cabin was quieter than those of propeller driven airliners. The Comet's four-crewmember cockpit held two pilots, a flight engineer and a navigator.
The clean, low-drag design featured many unique or innovative design elements, including a swept leading edge, integral wing fuel tanks and four-wheel bogie main undercarriage units designed by de Havilland. The Comet was also designed as one of the first pressurised commercial aircraft.[2] For emergencies, life rafts were stored in the wings near the engines and a life vest was stowed under each seat bottom.
Two pairs of de Havilland Ghost 50 Mk1 turbojet engines were buried in the wings close to the fuselage. British aircraft designers chose this configuration because it avoided the drag of podded engines and allowed a smaller fin and rudder, since the hazards of asymmetric thrust were reduced. The engines' higher mounting in the wings also reduced the risk of ingestion damage, a major problem for turbine engines. However, these benefits were compromised by increased structural weight and general complexity, including armour for the engine cells and a more complicated wing structure.
The Comet was originally intended to have two hydrogen peroxide powered de Havilland Sprite booster rockets for takeoff under hot and high conditions from airports such as Khartoum and Nairobi. These were tested on 30 flights, but the Ghosts were apparently powerful enough without them. The later Comet 4 was highly rated for its takeoff performance from high altitude locations such as Mexico City. Its newer Avon engines, low weight (compared to the Boeing 707 and Douglas DC-8) and exceptionally clean design all contributed to its high performance. The Comet wing was a classic design which has been in near-continuous civil and military service for over half a century, an achievement matched only by the Boeing 707/C-137/E-3. Early model Comets required about five or six man-hours of maintenance labour per flight hour, fewer than the propeller-driven planes it replaced.
The Comet's thin metal skin was composed of advanced new alloys (DTD 564/L.73 and DTD 746C/L90)* and was both chemically bonded using the adhesive Redux, and riveted, which saved weight and reduced the risk of fatigue cracks spreading from the rivets. When it went into service with BOAC on 2 May 1952 the Comet was the most exhaustively tested commercial airliner in history. For example, a water tank was used to test the entire forward fuselage section for metal fatigue by repeatedly pressurising to 2.75 psi overpressure (11 psi) and depressurising through more than 16,000 cycles, which was equivalent to about 40,000 hours of airline service.[3] The windows were tested under a pressure of 12 psi, 4.75 psi above the normal service ceiling of 36,000'.[3] One window frame survived a massive 100 psi, about 1,250% greater than the maximum pressure it would encounter in airline service.[3]
* DTD = Directorate of Technical Development
Operational history
The first production aircraft (G-ALYP) flew in January 1951. On 22 January 1952 G-ALYS was the first Comet to receive a certificate of airworthiness. On 2 May 1952 G-ALYP took off on the world's first all-jet flight with fare-paying passengers, beginning scheduled service to Johannesburg. The last plane from the initial order (G-ALYZ) began flying in September 1952, carrying freight along South American routes while simulating passenger schedules.
The Comet was a hit with passengers and commercial success was widely anticipated. Queen Elizabeth the Queen Mother was an early passenger on a special flight, becoming the first member of the British Royal Family to fly by jet. The Comet flew about 50% faster than advanced piston-engined types like the Douglas DC-6 (490 mph for the Comet compared to 315 mph for the DC-6B). The Comet's rate of climb was also far higher, which could cut flight times in half. The Ghost engine was smooth, relatively simple, fuel efficient above 30,000 ft, had low maintenance costs, little vibration and could fly above weather which the competition had to fly through. 30,000 passengers were carried during the first year of service and over 50 Comets were ordered.
Early accidents and incidents
On 26 October 1952, a BOAC flight at Ciampino airport near Rome, Italy failed to become airborne and several passengers sustained minor injuries. The following March a new Canadian Pacific Airlines Comet 1A (CF-CUN) was being delivered and on takeoff from Karachi, Pakistan collided with a bridge, killing 11 crew and others on board. Both of these accidents were originally attributed to pilot error: Over-rotation had led to a loss of lift from the leading edge of the plane's wing. However it was later determined that the wing profile led to a loss of lift at high angle of attack, and the engine inlets suffered from a lack of pressure recovery in these conditions as well. The wing leading edge was re-profiled, and a wing fence was added, apparently to control spanwise flow.
The first fatal accident involving passengers was on 2 May 1953 when a BOAC Comet 1 (G-ALYV) crashed in a severe tropical storm six minutes after taking off from Calcutta Dum Dum (now Netaji Subhash Chandra Bose International Airport), India.[4] The break-up sequence began with a stabiliser and may have been exacerbated by over-manipulation of the fully powered flight controls. The Comet 1 and 1A have been criticised for a lack of "feel" in their controls.[citation needed]
Comet disasters of 1954
G-ALYP crashed off the Italian island of Elba (BOAC Flight 781, 10 January 1954) with the loss of everyone on board. There was no obvious reason for the crash, and the fleet was grounded while the Abell Committee formed to determine potential causes for the crash. The committee focused on six potential problems; control flutter (which had led to the loss of the de Havilland Swallow), structural failure due to high loads or metal fatigue of the wing structure, failure of the powered flight controls, failure of the window panels leading to explosive decompression, or fire and other engine problems. They concluded fire was the most likely cause of the problem, and a number of changes were made to the aircraft to protect the engines and wings from damage which might lead to another fire.[5]
During this investigation the Royal Navy conducted recovery operations, including the first use of underwater television cameras. The first wreckage was discovered on 12 January and the search continued until August, by which time 70 percent of the main structure, 80 percent of the power section and 50 percent of the equipment had been recovered. The forensic reconstruction effort was only lately underway when the Abell Committee reported their findings. On 4 April Lord Brabazon wrote to the Minister of Transport, "Although no definite reason for the accident has been established, modifications are being embodied to cover every possibility that imagination has suggested as a likely cause of the disaster. When these modifications are completed and have been satisfactorily flight tested, the Board sees no reason why passenger services should not be resumed." Comet flights resumed on 23 March 1954.
On 8 April 1954, Comet G-ALYY, on charter to South African Airways and on a flight from Rome to Cairo, crashed near Naples. The fleet was immediately grounded once again and a large investigation board was formed under the direction of the Royal Aircraft Establishment.
Engineers subjected an identical airframe (G-ALYU) to repeated repressurisation and overpressurisation and after 3057 flight cycles (1221 actual and 1836 simulated) G-ALYU failed due to metal fatigue near the front port-side escape hatch.[6] Investigators began considering fatigue as the most likely cause of both accidents and further research into measurable strain on the skin began. Stress around the window corners was found to be much higher than expected, "probably over 40,000 psi," and stresses on the skin were generally more than previously expected or tested. Such high stress was due to stress concentration, a consequence of the window's square shape.
The principal investigator concluded, "In the light of known properties of the aluminium alloy D.T.D. 546 or 746 of which the skin was made and in accordance with the advice I received from my Assessors, I accept the conclusion of R.A.E. that this is a sufficient explanation of the failure of the cabin skin of Yoke Uncle by fatigue after a small number, namely, 3.060 cycles of pressurisation.".[7]
Before the Elba accident, G-ALYP had made 1,290 pressurised flights and at the time of the Naples accident G-ALYY had made 900 pressurised flights. Walker said he was not surprised by this, noting that the difference was about 3 to 1 and previous experience with metal fatigue suggested that a total range of 9 to 1 between experiment and outcome in the field could result in failure. Thus, if the tank test result was "typical," aircraft failures could be expected at anywhere from 1000 to 9000 cycles. By then the RAE had reconstructed about two-thirds of G-ALYP at Farnborough and found fatigue crack growth from a rivet hole at the low-drag fiberglass forward "window" around the Automatic Direction Finder, which had caused a catastrophic breakup of the aircraft in high altitude flight.
The square windows of the Comet 1 were redesigned as oval for the Comet 2, which first flew in 1953. The skin sheeting was thickened slightly. The remaining Comet 1s and 1As were either scrapped or modified with oval window rip-stop doublers and a program to produce a Comet 2 with more powerful Rolls-Royce Avon engines was delayed. All production Comet 2s were modified to alleviate the fatigue problems and most of these served with the RAF as the Comet C2. The Comet did not resume commercial airline service until 1958, when the much improved Comet 4 was introduced and became the first jet airliner to enter transatlantic service. The Comet nose section was also used on the Sud Aviation Caravelle. As is often the case in aeronautical engineering, other aircraft manufacturers learned from and profited by de Havilland's hard-learned lessons.[8]
Variants
Comet 1
The square-windowed Comet 1 was the first model produced. An updated Comet 1A was offered and in the wake of the 1954 disasters, some of these were modified as Comet 1XBs with strengthened fuselages and oval windows.
Comet 2
The Comet 2 had a slightly larger wing, higher fuel capacity and more powerful Rolls-Royce Avon engines which all improved the aircraft's range and performance. Following the Comet 1 disasters these models were rebuilt with heavier gauge skin and rounded openings. 12 of the 44-seat Comet 2s were ordered by BOAC for the South Atlantic route and the first production aircraft (G-AMXA) flew on 27 August 1953. Although these aircraft performed well on the South Atlantic routes, their range was still not suitable for the North Atlantic. All but four Comet 2s were allocated to the RAF. Eight Comet C2 transport aircraft and two Comet T2 crew trainers were delivered to the RAF beginning in 1955.
- Comet 2X: Limited to a single Comet Mk 1 powered by four Rolls-Royce Avon 502 turbojet engines and used as a development aircraft for the Comet 2.
- Comet 2E: Two Comet 2 airliners were fitted with Rolls-Royce Avon 504 turbojets in the inner nacelles and Rolls-Royce Avon 524 turbojets in the outer ones. They were used by BOAC for proving flights during 1957-1958.
Comet 3
The Comet 3 was a lengthened Comet 2 with greater capacity and range. After the fatigue accidents, orders dwindled and only two Comet 3s were built. One flew and the other was used for structural and technology testing during development of the similarly sized Comet 4. Nine further airframes were not completed and their construction was abandoned at Hatfield.
Comet 4
The Comet 4 was a further improvement on the stretched Comet 3 with even greater fuel capacity. This design had come a long way from the original Comet 1. The aircraft had grown by 5.64 m (18 ft 6 in) and typically seated 74 to 81 passengers compared to the Comet 1's 36 to 44. It had a longer range, higher cruising speed and higher maximum takeoff weight. These improvements were possible largely because of Rolls-Royce Avon engines with twice the thrust of the Comet 1's de Havilland Ghosts.
BOAC ordered 19 Comet 4s in March 1955 and a Comet 4 (G-APDA) first flew on 27 April 1958. Deliveries to BOAC began on 30 September 1958 with two aircraft. BOAC aircraft G-APDC initiated the first trans-atlantic Comet 4 service and the first scheduled trans-Atlantic passenger jet service in history, flying from London to New York with a stopover at Gander on 4 October 1958. Rival Pan Am's inaugural 707 service began three weeks later.
American operator Capital Airlines ordered four Comet 4s and 4As in July 1956. The Comet 4A was designed for short-range operations and had a stretched fuselage with short wings (lacking the pinion fuel tanks of the Comet 4). This order was cancelled but the aircraft were built for British European Airways (BEA) as the Comet 4B with a further fuselage stretch of 38 inches and seating for 99 passengers. The first Comet 4B (G-APMA) flew on 27 June 1959 and BEA aircraft G-APMB began service on 1 April 1960 from Tel Aviv to London-Heathrow.
The last Comet 4 variant was the Comet 4C with the same longer fuselage as the Comet 4B coupled with the larger wings and fuel tanks of the original Comet 4, which gave it a longer range than the 4B. The first Comet 4C flew on 31 October 1959 and Mexicana began scheduled Comet 4C flights in 1960. The last two Comet 4C fuselages were used to build prototypes of the Hawker Siddeley Nimrod maritime patrol aircraft.
Comet 5 design
The Comet 5 was proposed as an improvement over previous models, including a wider fuselage with five-abreast seating, a wing with greater sweep and pod mounted Rolls-Royce Conway engines. All of these changes would have led to a configuration similar to the American Boeing 707 and Douglas DC-8. Without support from the Ministry of Transport, none were ever built. The MoT subsequently backed BOAC's order of Conway-powered Boeing 707s.
Hawker Siddeley Nimrod
The last two Comet 4 fuselages produced were modified as prototypes to meet a British requirement for a maritime patrol aircraft for the Royal Air Force designated the HS.801. The aircraft became the Hawker Siddeley Nimrod and was built at the Hawker Siddeley factory at Woodford Aerodrome. Entering service in 1969 five variants of the Nimrod have been produced with two still in-service and the re-winged re-engined Nimrod MRA 4 due to enter service in 2007.
Production and service summary
The Comet was built at two different de Havilland factories at Hatfield Aerodrome and Hawarden Aerodrome. A total of 114 aircraft were completed and flown: 12 of Comet 1, ten of Comet 1A, 15 of Comet 2, only one of Comet 3, and 76 of Comet 4 (two as the HS.801).
Thirteen aircraft were lost in fatal accidents and of these, five were considered to have been brought about by aircraft design or fatigue problems. The last fatal accident involving the Comet was at Tripoli, Libya on 2 January 1971, caused by pilot error.
A total of 76 Comet 4 family aircraft were delivered from 1958 to 1964. BOAC retired its Comet 4s from revenue service in 1965 but other operators continued flying Comets in commercial passenger service until 1981. Dan-Air played a significant role in the fleet's later history and at one time owned all 49 remaining airworthy civil Comets. In 1997 a Comet 4C which had been owned by the British government made the last documented Comet flight.
Although the Comet was the first jet airliner in regularly scheduled passenger service, the damage done to the aircraft's reputation by the Comet 1 disasters contributed to Boeing's domination of the jetliner market. The first prototype 707 was flown in 1954 and Douglas launched the DC-8 program in 1955. For a brief period the Soviet Union's Tupolev Tu-104 was the only jet airliner flying commercially.
Both the 707 and DC-8 had more marketable ranges and passenger accommodations than the Comet. American manufacturers also benefited from a very large domestic airline market and US aircraft manufacturers have enjoyed a large share of the commercial jetliner market for half a century. Their only significant competition came later from the Airbus consortium although Tupolev still nominally manufactures jet airliners, namely the Tu-204.
Twenty-four airlines flew the Comet and it remained in passenger service for almost three decades, until 1981. Designed over 50 years earlier at the beginning of the jet age, a variant of the Comet flying with modern avionics is still in service with the Royal Air Force.
Preserved aircraft
- Comet 1
-
- The only complete surviving Comet 1 is a Comet 1XB on display at the RAF Museum Cosford, painted in BOAC colours with the registration G-APAS[9], although it never flew for that airline, having been delivered to Air France and then to the Ministry of Supply after conversion to 1XB standard.
- The nose of BOAC Comet 1A G-ANAV[10] is displayed at London's Science Museum, while the fuselage of Air France Comet 1A F-BGNX is preserved at the De Havilland Aircraft Heritage Centre in Hertfordshire.
- Comet 2
-
- Comet C2 "Sagittarius" (serial XK699, later maintenance serial 7971M) is displayed at the gate of RAF Lyneham in Wiltshire. Lyneham was previously the operational base for all RAF operated Comets.
- Comet 4
-
- Comet 4B (Registration G-APYD[11]) is stored at the Science Museum facility at Wroughton, Wiltshire.
- Comet 4C (Registration N888WA[12]) is being restored and on display in British Overseas Airways Corporation livery at the restoration facility of the Museum of Flight at Paine Field next to Boeing's Everett, WA widebody plant.
- Comet 4C (Registration N777WA[13]) is on display at the Parque Zoológico Irapuato in Mexico.
- Comet 4 (Registration G-APDB[14]) is on display at the Imperial War Museum in Duxford, England. The plane is in Dan-Air colours as part of the Flight Line Display and is available for touring inside at specific times.
- Comet 4C (Registration G-BDIW[15]) is on display at the Flugausstellung Leo Junior at Hermeskeil, Germany in Dan-Air colours.
- Comet 4C (Registration G-BDIX[16]) is on display at the Museum of Flight at East Fortune near Edinburgh, Scotland in Dan-Air livery.
- The last Comet to fly was Canopus (Serial XS235) which is kept in running condition at Bruntingthorpe Aerodrome where it regularly conducts fast taxi runs. There is a campaign to return Canopus to flight, with the current goal to have it in the air by the 50th anniversary of the first regular transatlantic jet service which started on 4 October 1958.
Operators
Civilian operators
- East African Community (Kenya, Tanzania, Uganda)
- AREA
- The Government of Saudi Arabia
- King Saud of Saudi Arabia
- BEA Airtours
- British European Airways (BEA)
- British Overseas Airways Corporation (BOAC)
- Channel Airways
- Dan Air
- Capital Airlines (Ordered but none actually operated by CA)
Military operators
- Royal Canadian Air Force
- 412 Squadron (1953-1963) Comet 1A (later retrofitted to 1XB)
- Royal Air Force
- 51 Squadron (1958-1975) Comet C2 (RC)
- 192 Squadron (1957-1958) Comet C2 (RC)
- 216 Squadron (1956-1975) Comet C2 and C4
- Royal Aircraft Establishment
Specifications (Comet 4)
General characteristics
- Crew: 4
- Capacity: 56-109 passengers
- Airfoil: NACA 63A116 mod root, NACA 63A112 mod tip
Performance
References
- ^ Jackson 1988
- ^ Winchester 2004, p. 109. Note: The limited production Boeing 307 Stratoliner and later Model 377 Stratocruiser were pressurised propeller-driven airliners.
- ^ a b c Davies and Birtles 1999, p. 30.
- ^ Darling 2005, p.36.
- ^ Report of the Public Inquiry into the causes and circumstances of the accident which occurred on the 10 January, 1954, to the Comet aircraft G-ALYP, Part IX (d)
- ^ RAF Museum
- ^ Report of the Public Inquiry into the causes and circumstances of the accident which occurred on the 10 January 1954, to the Comet aircraft G-ALYP, Part XI (a. 69)
- ^ Job 1996, p. 21.
- ^ "G-INFO Database". Civil Aviation Authority.
- ^ "G-INFO Database". Civil Aviation Authority.
- ^ "G-INFO Database". Civil Aviation Authority.
- ^ "FAA Registry (N888WA)". Federal Aviation Administration.
- ^ "FAA Registry (N777WA)". Federal Aviation Administration.
- ^ "G-INFO Database". Civil Aviation Authority.
- ^ "G-INFO Database". Civil Aviation Authority.
- ^ "G-INFO Database". Civil Aviation Authority.
- Avrane, A. Sud Est Caravelle. London: Jane's Publishing, 1981. ISBN 0-7106-0044-5.
- Davies, R.E.G. and Birtles, Philip J. Comet: The World's First Jet Airliner. McLean, Virginia: Paladwr Press, 1999. ISBN 1-888962-14-3.
- Jackson, A.J. British Civil Aircraft 1919-1972: Volume II. London: Putnam (Conway Maritime Press), 1988. ISBN 0-85177-813-5.
- Job, Macarthur. Air Disaster: Volume 1. Fyshwick, Australian Capital Territory: Aerospace Publications, 1996. ISBN 1-875671-11-0
- Lo Bao, Phil, ed. The de Havilland Comet (Airlines & Airliners). Middlesex, UK: The Aviation Data Centre Ltd., 1996.
- Walker, Timothy. The First Jet Airliner: The Story of the de Havilland Comet. Newcastle-Upon-Tyne, UK: Scoval Publishing Ltd., 2000. ISBN 1-902236-05-X.
- Winchester, Jim (ed.). "De Havilland DH.106 Comet." Civil Aircraft (The Aviation Factfile). London: Grange Books plc, 2004. ISBN 1-85013-642-1.
- Withun, Bill. "Triumph, Tragedy and Triumph Again... the Comet Story." Air Classics Airliner Special No. 2, Summer 1976.
External links
- Terrible accidents involving De Havilland Comet
- Marc Schaeffer's Comet Website
- David Young's Comet Website
- Campaign to return Canopus to flight
- Report on test Comet G-ALYR fatigue failures
- Lots of photos and stories about the RCAF Comets
Related content
Related development
Aircraft of comparable role, configuration, and era
Related lists