Median algebra
Appearance
In mathematics, a median algebra is a set with a ternary operation < x,y,z > satisfying a set of axioms which generalise the notion of median, or majority vote, as a Boolean function.
The axioms are
- < x,y,y > = y
- < x,y,z > = < z,x,y >
- < x,y,z > = < x,z,y >
- < < x,w,y > ,w,z > = < x,w, < y,w,z > >
The second and third axioms imply commutativity: it is possible (but not easy) to show that in the presence of the other three, axiom (3) is redundant. The fourth axiom implies associativity. There are other possible axiom systems: for example the two
- < x,y,y > = y
- < u,v, < u,w,x > > = < u,x, < w,u,v > >
also suffice.
In a Boolean algebra the median function satisfies these axioms, so that every Boolean algebra is a median algebra.
Birkhoff and Kiss showed that a median algebra with elements 0 and 1 satisfying < 0,x,1 > = x is a distributive lattice.
References
- Birkhoff, Garrett; Kiss (1947). "A ternary operation in distributive lattices". Bull. Amer. Math. Soc. 53: 749–752.
{{cite journal}}
: Unknown parameter|fitst2=
ignored (help) - Isbell, John R. (August 1980). "Median algebra". Trans. Amer. Math. Soc. 260 (2): 319–362.
- Knuth, Donald E. (2008). Introduction to combinatorial algorithms and Boolean functions. The Art of Computer Programming. Vol. 4.0. pp. 64–74. ISBN 0-321-53496-4.