From Wikipedia, the free encyclopedia
In the mathematics , and specifically real analysis , the Dini derivatives (or Dini derivates ) are a class of generalizations of the derivative . The upper Dini derivative of a continuous function ,
f
:
R
→
R
,
{\displaystyle f:{\mathbb {R} }\rightarrow {\mathbb {R} },}
denoted by
f
+
′
,
{\displaystyle f'_{+},\,}
is defined as
f
+
′
(
t
)
=
lim
h
→
0
+
sup
f
(
t
+
h
)
−
f
(
t
)
h
.
{\displaystyle f'_{+}(t)=\lim _{h\rightarrow 0^{+}}\sup {\frac {f(t+h)-f(t)}{h}}.}
The lower Dini derivative ,
f
−
′
,
{\displaystyle f'_{-},\,}
is defined as
f
−
′
(
t
)
=
lim
h
→
0
+
inf
f
(
t
+
h
)
−
f
(
t
)
h
{\displaystyle f'_{-}(t)=\lim _{h\rightarrow 0^{+}}\inf {\frac {f(t+h)-f(t)}{h}}}
(see lim sup and lim inf ). If
f
{\displaystyle f}
is defined on a vector space , then the upper Dini derivative at
t
{\displaystyle t}
in the direction
d
{\displaystyle d}
is denoted
f
+
′
(
t
,
d
)
=
lim
h
→
0
+
sup
f
(
t
+
h
d
)
−
f
(
t
)
h
.
{\displaystyle f'_{+}(t,d)=\lim _{h\rightarrow 0^{+}}\sup {\frac {f(t+hd)-f(t)}{h}}.}
If
f
{\displaystyle f}
is locally Lipschitz then
f
+
′
{\displaystyle f'_{+}\,}
is finite. If
f
{\displaystyle f}
is differentiable at
t
{\displaystyle t}
, then the Dini derivative at
t
{\displaystyle t}
is the usual derivative at
t
.
{\displaystyle t.}
Sometimes the notation
D
+
f
(
t
)
{\displaystyle D^{+}f(t)\,}
is used instead of
f
+
′
(
t
)
,
{\displaystyle f'_{+}(t),\,}
and
D
+
f
(
t
)
{\displaystyle D_{+}f(t)\,}
is used instead of
f
−
′
(
t
)
.
{\displaystyle f'_{-}(t).\,}
D
−
f
(
t
)
=
lim
h
→
0
−
sup
f
(
t
+
h
)
−
f
(
t
)
h
.
{\displaystyle D^{-}f(t)=\lim _{h\rightarrow 0^{-}}\sup {\frac {f(t+h)-f(t)}{h}}.}
and
D
−
f
(
t
)
=
lim
h
→
0
−
inf
f
(
t
+
h
)
−
f
(
t
)
h
.
{\displaystyle D_{-}f(t)=\lim _{h\rightarrow 0^{-}}\inf {\frac {f(t+h)-f(t)}{h}}.}
So when using the
D
{\displaystyle D}
notation of the Dini Derivates, the plus or minus sign indicates the left or right hand limits, and the placement of the sign indicates the
l
i
m
i
n
f
{\displaystyle liminf}
or
l
i
m
s
u
p
{\displaystyle limsup}
.
Each of the Dini derivatives always exist; however, they may take on the values
+
∞
{\displaystyle +\infty }
or
−
∞
{\displaystyle -\infty }
at times.
See also
References
Dini derivative at PlanetMath .