From Wikipedia, the free encyclopedia
In mathematics, the Meixner–Pollaczek polynomials are a family of orthogonal polynomials P (λ) n (x ,φ) introduced by Meixner (1934 ), which up to elementary changes of variables are the same as the Pollaczek polynomials P λ n (x ,a ,b ) rediscovered by Pollaczek (1949 ) in the case λ=1/2, and later generalized by him.
They are defined by
P
n
(
λ
)
(
x
;
ϕ
)
=
(
2
λ
)
n
n
!
e
i
n
ϕ
2
F
1
(
−
n
,
λ
+
i
x
2
λ
;
1
−
e
−
2
i
ϕ
)
{\displaystyle P_{n}^{(\lambda )}(x;\phi )={\frac {(2\lambda )_{n}}{n!}}e^{in\phi }{}_{2}F_{1}\left({\begin{array}{c}-n,~\lambda +ix\\2\lambda \end{array}};1-e^{-2i\phi }\right)}
P
n
λ
(
cos
ϕ
;
a
,
b
)
=
(
2
λ
)
n
n
!
e
i
n
ϕ
2
F
1
(
−
n
,
λ
+
i
(
a
cos
ϕ
+
b
)
/
sin
ϕ
2
λ
;
1
−
e
−
2
i
ϕ
)
{\displaystyle P_{n}^{\lambda }(\cos \phi ;a,b)={\frac {(2\lambda )_{n}}{n!}}e^{in\phi }{}_{2}F_{1}\left({\begin{array}{c}-n,~\lambda +i(a\cos \phi +b)/\sin \phi \\2\lambda \end{array}};1-e^{-2i\phi }\right)}
Examples
The first few Meixner–Pollaczek polynomials are
P
0
(
λ
)
(
x
;
ϕ
)
=
1
{\displaystyle P_{0}^{(\lambda )}(x;\phi )=1}
P
1
(
λ
)
(
x
;
ϕ
)
=
2
(
λ
cos
ϕ
+
x
sin
ϕ
)
{\displaystyle P_{1}^{(\lambda )}(x;\phi )=2(\lambda \cos \phi +x\sin \phi )}
P
2
(
λ
)
(
x
;
ϕ
)
=
x
2
+
λ
2
+
(
λ
2
+
λ
−
x
2
)
cos
(
2
ϕ
)
+
(
1
+
2
λ
)
x
sin
(
2
ϕ
)
.
{\displaystyle P_{2}^{(\lambda )}(x;\phi )=x^{2}+\lambda ^{2}+(\lambda ^{2}+\lambda -x^{2})\cos(2\phi )+(1+2\lambda )x\sin(2\phi ).}
Properties
Orthogonality
The Meixner–Pollaczek polynomials P m (λ) (x ;φ) are orthogonal on the real line with respect to the weight function
w
(
x
;
λ
,
ϕ
)
=
|
Γ
(
λ
+
i
x
)
|
2
e
(
2
ϕ
−
π
)
x
{\displaystyle w(x;\lambda ,\phi )=|\Gamma (\lambda +ix)|^{2}e^{(2\phi -\pi )x}}
and the orthogonality relation is given by[ 1]
∫
−
∞
∞
P
n
(
λ
)
(
x
;
ϕ
)
P
m
(
λ
)
(
x
;
ϕ
)
w
(
x
;
λ
,
ϕ
)
d
x
=
2
π
Γ
(
n
+
2
λ
)
(
2
sin
ϕ
)
2
λ
n
!
δ
m
n
,
λ
>
0
,
0
<
ϕ
<
π
.
{\displaystyle \int _{-\infty }^{\infty }P_{n}^{(\lambda )}(x;\phi )P_{m}^{(\lambda )}(x;\phi )w(x;\lambda ,\phi )dx={\frac {2\pi \Gamma (n+2\lambda )}{(2\sin \phi )^{2\lambda }n!}}\delta _{mn},\quad \lambda >0,\quad 0<\phi <\pi .}
Recurrence relation
The sequence of Meixner–Pollaczek polynomials satisfies the recurrence relation[ 2]
(
n
+
1
)
P
n
+
1
(
λ
)
(
x
;
ϕ
)
=
2
(
x
sin
ϕ
+
(
n
+
λ
)
cos
ϕ
)
P
n
(
λ
)
(
x
;
ϕ
)
−
(
n
+
2
λ
−
1
)
P
n
−
1
(
x
;
ϕ
)
.
{\displaystyle (n+1)P_{n+1}^{(\lambda )}(x;\phi )=2{\bigl (}x\sin \phi +(n+\lambda )\cos \phi {\bigr )}P_{n}^{(\lambda )}(x;\phi )-(n+2\lambda -1)P_{n-1}(x;\phi ).}
The Meixner–Pollaczek polynomials are given by the Rodrigues-like formula[ 3]
P
n
(
λ
)
(
x
;
ϕ
)
=
(
−
1
)
n
n
!
w
(
x
;
λ
,
ϕ
)
d
n
d
x
n
w
(
x
;
λ
+
1
2
n
,
ϕ
)
,
{\displaystyle P_{n}^{(\lambda )}(x;\phi )={\frac {(-1)^{n}}{n!\,w(x;\lambda ,\phi )}}{\frac {d^{n}}{dx^{n}}}w\left(x;\lambda +{\tfrac {1}{2}}n,\phi \right),}
where w (x ;λ,φ) is the weight function given above.
Generating function
The Meixner–Pollaczek polynomials have the generating function[ 4]
∑
n
=
0
∞
t
n
P
n
(
λ
)
(
x
;
ϕ
)
=
(
1
−
e
i
ϕ
t
)
−
λ
+
i
x
(
1
−
e
−
i
ϕ
t
)
−
λ
−
i
x
.
{\displaystyle \sum _{n=0}^{\infty }t^{n}P_{n}^{(\lambda )}(x;\phi )=(1-e^{i\phi }t)^{-\lambda +ix}(1-e^{-i\phi }t)^{-\lambda -ix}.}
See also
References
^ Koekoek, Lesky, & Swarttouw (2010), p. 213.
^ Koekoek, Lesky, & Swarttouw (2010), p. 213.
^ Koekoek, Lesky, & Swarttouw (2010), p. 214.
^ Koekoek, Lesky, & Swarttouw (2010), p. 215.
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues , Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag , doi :10.1007/978-3-642-05014-5 , ISBN 978-3-642-05013-8 , MR 2656096
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Pollaczek Polynomials" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Meixner, J. (1934), "Orthogonale Polynomsysteme Mit Einer Besonderen Gestalt Der Erzeugenden Funktion", J. London Math. Soc. , s1-9 : 6– 13, doi :10.1112/jlms/s1-9.1.6
Pollaczek, Félix (1949), "Sur une généralisation des polynomes de Legendre" , Les Comptes rendus de l'Académie des sciences , 228 : 1363– 1365, MR 0030037