Jump to content

Juerg Leuthold

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Feuertrinker (talk | contribs) at 13:13, 8 May 2020 (Awards and Honors: English style formatting). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Juerg Leuthold is a full Professor at ETH Zurich, Switzerland.[1]

Leuthold was born in 1966 in Switzerland. He has a Ph.D. degree in physics from ETH Zurich for work in the field of integrated optics and all-optical communications. From 1999 to 2004 he was affiliated with Bell Labs, Lucent Technologies in Holmdel, USA, where he performed device and system research with III/V semiconductor and silicon optical bench[2] materials for applications in high-speed telecommunications. From 2004 to 2013 he was a full professor at Karlsruhe Institute of Technology, where he headed the Institute of Photonics and Quantum Electronics and the Helmholtz Institute of Microtechnology. Since March 2013 he has been a full professor at the ETH Zurich (Swiss Federal Institute of Technology), where he heads the Institute of Electromagnetic Fields.

Leuthold is a fellow of the Optical Society of America and of the Institute of Electrical and Electronics Engineers. When he was a professor at Karlsruhe, he was a member of the Helmholtz Association Think Tank and a member of the Heidelberg Academy of Science. He served on the board of directors of the Optical Society of America. Leuthold has been and is serving the community as general chair and in many technical program committees.

Research Interests

Leuthold interests are in the fields of photonics, terahertz and communications. His current activities are centered around"

  • High-speed optical communications and sensing
  • Microwave photonics and tetrahertz technologies
  • Plasmonics
  • Integrated optics
  • Atomic Scale Technologies (Memristive device research)
Research highlights include
  • Direct conversion of an RF signal to an optical signal by means of plasmonic-antenna[3][4]
  • Plasmonic detection with 100 GHz and beyond bandwidth and high responsivity[5][6][7]
  • The demonstration of the smallest and most compact plasmonic modulators[8][9][10]
  • Demonstration of single atom plasmonic switches (i.e. switches, where reloacting a single atom performs optical switching operation in the order o 10 dB) [11]
  • Record Encoding of 26 Tbit/s of OFDM data onto a single laser[12] and Nyquist encoding of 30 Tbit/s of data onto a single laser[13]
  • Record nonlinear conversion in a short silicon slot waveguide[14]
  • First 100 Gbit/s single carrier wireless transmission demonstration[15]
  • Development of DPSK Transmission system[16]
  • Record all-optical signal processing: Most compact and fast 100 Gbit/s all-optical wavelength converter,[17] and demonstration of 1'000'000 km transmission [18]
  • Theory and demonstration of "most perfect" semiconductor-optical amplifier (SOA) based all-optical signal wavelength conversion scheme[19]
  • Contributions to the development of Multimode-Interference (MMI) Couplers: Introduction of higher-order mode converters,[20] spatial mode filters realized by MMIs,[21] or MMI couplers with tunable splitting ratios[22]

Publications

Link to a List of Publications

Awards and Honors

References

  1. ^ "Leuthold, Juerg, Prof. Dr".
  2. ^ Gates, J.; Muehlner, D.; Cappuzzo, M.; Fishteyn, M.; Gomez, L.; Henein, G.; Laskowski, E.; Ryazansky, I.; Shmulovich, J. (May 1998). "Hybrid integrated silicon optical bench planar lightguide circuits". 1998 Proceedings. 48th Electronic Components and Technology Conference (Cat. No.98CH36206): 551–559. doi:10.1109/ECTC.1998.678749. ISBN 0-7803-4526-6.
  3. ^ Salamin, Yannick; Heni, Wolfgang; Haffner, Christian; Fedoryshyn, Yuriy; Hoessbacher, Claudia; Bonjour, Romain; Zahner, Marco; Hillerkuss, David; Leuchtmann, Pascal (2015-12-09). "Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna". Nano Letters. 15 (12): 8342–8346. Bibcode:2015NanoL..15.8342S. doi:10.1021/acs.nanolett.5b04025. ISSN 1530-6984. PMC 4710456. PMID 26570995.
  4. ^ Leuthold, J.; Dalton, L. R.; Elder, D. L.; Burla, M.; Watanabe, T.; Bonjour, R.; Haffner, C.; Fedoryshyn, Y.; Josten, A. (December 2018). "Microwave plasmonic mixer in a transparent fibre–wireless link". Nature Photonics. 12 (12): 749–753. Bibcode:2018NaPho..12..749S. doi:10.1038/s41566-018-0281-6. ISSN 1749-4893. PMC 6276987. PMID 30532800.
  5. ^ Ma, Ping; Salamin, Yannick; Baeuerle, Benedikt; Josten, Arne; Heni, Wolfgang; Emboras, Alexandros; Leuthold, Juerg (2019-01-16). "Plasmonically Enhanced Graphene Photodetector Featuring 100 Gbit/s Data Reception, High Responsivity, and Compact Size". ACS Photonics. 6 (1): 154–161. doi:10.1021/acsphotonics.8b01234.
  6. ^ Salamin, Yannick; Ma, Ping; Baeuerle, Benedikt; Emboras, Alexandros; Fedoryshyn, Yuriy; Heni, Wolfgang; Cheng, Bojun; Josten, Arne; Leuthold, Juerg (2018-08-15). "100 GHz Plasmonic Photodetector". ACS Photonics. 5 (8): 3291–3297. doi:10.1021/acsphotonics.8b00525.
  7. ^ Dorodnyy, A.; Salamin, Y.; Ma, P.; Plestina, J. Vukajlovic; Lassaline, N.; Mikulik, D.; Romero-Gomez, P.; Morral, A. Fontcuberta i; Leuthold, J. (November 2018). "Plasmonic Photodetectors" (PDF). IEEE Journal of Selected Topics in Quantum Electronics. 24 (6): 2840339. Bibcode:2018IJSTQ..2440339D. doi:10.1109/JSTQE.2018.2840339. ISSN 1077-260X.
  8. ^ Ayata, Masafumi; Fedoryshyn, Yuriy; Heni, Wolfgang; Baeuerle, Benedikt; Josten, Arne; Zahner, Marco; Koch, Ueli; Salamin, Yannick; Hoessbacher, Claudia; Haffner, Christian; Elder, Delwin L.; Dalton, Larry R.; Leuthold, Juerg (2017). "High-speed plasmonic modulator in a single metal layer". Science. 358 (6363): 630–632. Bibcode:2017Sci...358..630A. doi:10.1126/science.aan5953. PMID 29097545.
  9. ^ Hoessbacher, C.; Josten, A.; Baeuerle, B.; Fedoryshyn, Y.; Hettrich, H.; Salamin, Y.; Heni, W.; Haffner, C.; Kaiser, C.; Schmid, R.; Elder, D. L.; Hillerkuss, D.; Möller, M.; Dalton, L. R.; Leuthold, J. (2017). "Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ". Optics Express. 25 (3): 1762–1768. Bibcode:2017OExpr..25.1762H. doi:10.1364/OE.25.001762. PMID 29519029.
  10. ^ doi:10.1038/nphoton.2015.127
  11. ^ Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg (2015). "Atomic Scale Plasmonic Switch". Nano Letters. 16 (1): 709–714. arXiv:1508.07748. doi:10.1021/acs.nanolett.5b04537. PMID 26670551.
  12. ^ Hillerkuss, D.; Schmogrow, R.; Schellinger, T.; Jordan, M.; Winter, M.; Huber, G.; Vallaitis, T.; Bonk, R.; Kleinow, P.; Frey, F.; Roeger, M.; Koenig, S.; Ludwig, A.; Marculescu, A.; Li, J.; Hoh, M.; Dreschmann, M.; Meyer, J.; Ben Ezra, S.; Narkiss, N.; Nebendahl, B.; Parmigiani, F.; Petropoulos, P.; Resan, B.; Oehler, A.; Weingarten, K.; Ellermeyer, T.; Lutz, J.; Moeller, M.; Huebner, M. (2011). "26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing". Nature Photonics. 5 (6): 364–371. doi:10.1038/nphoton.2011.74. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help); no-break space character in |title= at position 3 (help)
  13. ^ Hillerkuss, David; Schmogrow, Rene; Meyer, Matthias; Wolf, Stefan; Jordan, Meinert; Kleinow, Philipp; Lindenmann, Nicole; Schindler, Philipp C.; Melikyan, Argishti; Yang, Xin; Ben-Ezra, Shalva; Nebendahl, Bend; Dreschmann, Michael; Meyer, Joachim; Parmigiani, Francesca; Petropoulos, Periklis; Resan, Bojan; Oehler, Andreas; Weingarten, Kurt; Altenhain, Lars; Ellermeyer, Tobias; Moeller, Michael; Huebner, Michael; Becker, Juergen; Koos, Christian; Freude, Wolfgang; Leuthold, Juerg (2012). "Single-Laser 325 Tbit/S Nyquist WDM Transmission". Journal of Optical Communications and Networking. 4 (10): 715–723. arXiv:1203.2516. Bibcode:2012arXiv1203.2516H. doi:10.1364/JOCN.4.000715. {{cite journal}}: no-break space character in |title= at position 17 (help)
  14. ^ Koos, C.; Vorreau, P.; Vallaitis, T.; Dumon, P.; Bogaerts, W.; Baets, R.; Esembeson, B.; Biaggio, I.; Michinobu, T.; Diederich, F.; Freude, W.; Leuthold, J. (2009). "All-optical high-speed signal processing with silicon–organic hybrid slot waveguides". Nature Photonics. 3 (4): 216–219. Bibcode:2009NaPho...3..216K. doi:10.1038/nphoton.2009.25.
  15. ^ Koenig, S.; Lopez-Diaz, D.; Antes, J.; Boes, F.; Henneberger, R.; Leuther, A.; Tessmann, A.; Schmogrow, R.; Hillerkuss, D.; Palmer, R.; Zwick, T.; Koos, C.; Freude, W.; Ambacher, O.; Leuthold, J.; Kallfass, I. (2013). "Wireless sub-THZ communication system with high data rate". Nature Photonics. 7 (12): 977–981. Bibcode:2013NaPho...7..977K. doi:10.1038/nphoton.2013.275.
  16. ^ "2.5 Tb/S (64x42.7 Gb/S) Transmission over 40x100 km NZDSF Using RZ-DPSK Format and All-Raman-Amplified Spans" (Document). 2002-03-17. pp. FC2. {{cite document}}: Cite document requires |publisher= (help); Unknown parameter |url= ignored (help)
  17. ^ "100 Gbit/S All-Optical Wavelength Conversion with an Integrated SOA Delayed-Interference Configuration" (Document). 2000-07-09. pp. OWB3. {{cite document}}: Cite document requires |publisher= (help); Unknown parameter |url= ignored (help)
  18. ^ Leuthold, J.; Raybon, G.; Su, Y.; Essiambre, R.; Cabot, S.; Jaques, J.; Kauer, M. (2002). "40 Gbit∕s transmission and cascaded all-optical wavelength conversion over 1 000 000 km". Electronics Letters. 38 (16): 890. doi:10.1049/el:20020595.
  19. ^ Giles, C. Randy; Ryf, Roland; Jaques, James J.; Cabot, Steven; Marom, Dan M.; Leuthold, Juerg (January 2004). "All-Optical Wavelength Conversion Using aPulse Reformatting Optical Filter". Journal of Lightwave Technology. 22 (1): 186. Bibcode:2004JLwT...22..186L. doi:10.1109/JLT.2003.822158.
  20. ^ Melchior, Hans; Besse, Pierre A.; Gamper, Emil; Eckner, Juerg; Leuthold, Juerg (July 1998). "Multimode Interference Couplers for the Conversion and Combining of Zero- and First-Order Modes". Journal of Lightwave Technology. 16 (7): 1228. Bibcode:1998JLwT...16.1228L. doi:10.1109/50.701401.
  21. ^ Leuthold, J.; Hess, R.; Eckner, J.; Besse, P. A.; Melchior, H. (1996). "Spatial mode filters realized with multimode interference couplers". Optics Letters. 21 (11): 836–8. Bibcode:1996OptL...21..836L. doi:10.1364/OL.21.000836. PMID 19876175.
  22. ^ Leuthold, J.; Joyner, C.W. (2001). "Multimode interference couplers with tunable power splitting ratios". Journal of Lightwave Technology. 19 (5): 700–707. Bibcode:2001JLwT...19..700L. doi:10.1109/50.923483.
  23. ^ "2013 elevated fellow" (PDF). IEEE Fellows Directory.