Experiment
In the scientific method, an experiment (Latin: ex- periri, "of (or from) trying") is a set of observations performed in the context of solving a particular problem or question, to support or falsify a hypothesis or research concerning phenomena. The experiment is a cornerstone in the empirical approach to acquiring deeper knowledge about the physical world.
fhjksghjrktreutierghbvkl,.jjrereutireturiturietuiregfdmg,ffdskrjewojtio5reuhjigtjretirefgjufeutretuirturitrtuireutireeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeepwopeopwqoepweopwp[qepwqoep[wqeop[wqwqpeop[wqe[wqpqp[oepwqe[wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwp[oepwq[oep[wqoep[wqeopwqeopwqewqpeowqpeowqpreowuiroewtretre8tre98yt9r8y9tr8y98tr9try89ry8tr9y8tr9+y8t+9y8+tr8r6y6try8tr9y8tr9y8tr9y8tr9y8trytr8y9try89tr+y8tr9y8t9y8t9ry89try8t9y8t9y8tr9ytr8y9try8tr98yr+9y
Controlled experiments
Many hypotheses in sciences such as physics can establish causality by noting that, until some phenomenon occurs, nothing happens; then when the phenomenon occurs, a second phenomenon is observed. But often in science, this situation is difficult to obtain.
For example, in the old joke, someone claims that they are snapping their fingers "to keep the tigers away"; and justifies this behavior by saying "see - its working!" While this "experiment" does not falsify the hypothesis "snapping fingers keeps the tigers away", it does not really support the hypothesis - not snapping your fingers keeps the tigers away as well.
To demonstrate a cause and effect hypothesis, an experiment must often show that, for example, a phenomenon occurs after a certain treatment is given to a subject, and that the phenomenon does not occur in the absence of the treatment. (See Baconian method.)
A controlled experiment generally compares the results obtained from an experimental sample against a control sample, which is practically identical to the experimental sample except for the one aspect whose effect is being tested. A good example would be a drug trial. The sample or group receiving the drug would be the experimental one; and the one receiving the placebo would be the control one. In many laboratory experiments it is good practice to have several replicate samples for the test being performed and have both a positive control and a negative control. The results from replicate samples can often be averaged, or if one of the replicates is obviously inconsistent with the results from the other samples, it can be discarded as being the result of an experimental error (some step of the test procedure may have been mistakenly omitted for that sample). Most often, tests are done in duplicate or triplicate. A positive control is a procedure that is very similar to the actual experimental test but which is known from previous experience to give a positive result. A negative control is known to give a negative result. The positive control confirms that the basic conditions of the experiment were able to produce a positive result, even if none of the actual experimental samples produce a positive result. The negative control demonstrates the base-line result obtained when a test does not produce a measurable positive result; often the value of the negative control is treated as a "background" value to be subtracted from the test sample results. Sometimes the positive control takes the form of a standard curve.
An example that is often used in teaching laboratories is a controlled protein assay. Students might be given a fluid sample containing an unknown (to the student) amount of protein. It is their job to correctly perform a controlled experiment in which they determine the concentration of protein in fluid sample (usually called the "unknown sample"). The teaching lab would be equipped with a protein standard solution with a known protein concentration. Students could make several positive control samples containing various dilutions of the protein standard. Negative control samples would contain all of the reagents for the protein assay but no protein. In this example, all samples are performed in duplicate. The assay is a colorimetric assay in which a spectrophotometer can measure the amount of protein in samples by detecting a colored complex formed by the interaction of protein molecules and molecules of an added dye. In the illustration, the results for the diluted test samples can be compared to the results of the standard curve (the blue line in the illustration) in order to determine an estimate of the amount of protein in the unknown sample.
Controlled experiments can be performed when it is difficult to exactly control all the conditions in an experiment. In this case, the experiment begins by creating two or more sample groups that are probabilistically equivalent, which means that measurements of traits should be similar among the groups and that the groups should respond in the same manner if given the same treatment. This equivalency is determined by statistical methods that take into account the amount of variation between individuals and the number of individuals in each group. In fields such as microbiology and chemistry, where there is very little variation between individuals and the group size is easily in the millions, these statistical methods are often bypassed and simply splitting a solution into equal parts is assumed to produce identical sample groups.
Once equivalent groups have been formed, the experimenter tries to treat them identically except for the one variable that he or she wishes to isolate. Human experimentation requires special safeguards against outside variables such as the placebo effect. Such experiments are generally double blind, meaning that neither the volunteer nor the researcher knows which individuals are in the control group or the experimental group until after all of the data has been collected. This ensures that any effects on the volunteer are due to the treatment itself and are not a response to the knowledge that he is being treated.
In human experiments, a subject (person) may be given a stimulus to which he or she should respond. The goal of the experiment is to measure the response to a given stimulus.
Natural experiments
The term "experiment" usually implies a controlled experiment, but sometimes controlled experiments are prohibitively difficult or impossible. In this case researchers resort to natural experiments, also called quasi-experiments. Natural experiments rely solely on observations of the variables of the system under study, rather than manipulation of just one or a few variables as occurs in controlled experiments. To the degree possible, they attempt to collect data for the system in such a way that contribution from all variables can be determined, and where the effects of variation in certain variables remain approximately constant so that the effects of other variables can be discerned. The degree to which this is possible depends on the observed correlation between explanatory variables in the observed data. When these variables are not well correlated, natural experiments can approach the power of controlled experiments. Usually, however, there is some correlation between these variables, which reduces the reliability of natural experiments relative to what could be concluded if a controlled experiment were performed. Also, because natural experiments usually take place in uncontrolled environments, variables from undetected sources are neither measured nor held constant, and these may produce illusory correlations in variables under study.
Much research in several important science disciplines, including economics, political science, geology, paleontology, ecology, meteorology, and astronomy, relies on quasi-experiments. For example, in astronomy it is clearly impossible, when testing the hypothesis "suns are collapsed clouds of hydrogen", to start out with a giant cloud of hydrogen, and then perform the experiment of waiting a few billion years for it to form a sun. However, by observing various clouds of hydrogen in various states of collapse, and other implications of the hypothesis (for example, the presence of various spectral emissions from the light of stars), we can collect data we require to support the hypothesis. An early example of this type of experiment was the first verification in the 1600s that light does not travel from place to place instantaneously, but instead has a measurable speed. Observation of the appearance of the moons of Jupiter were slightly delayed when Jupiter was farther from Earth, as opposed to when Jupiter was closer to Earth; and this phenomenon was used to demonstrate that the difference in the time of appearance of the moons was consistent with a measurable speed of light.
Observational studies
Observational studies are very much like controlled experiments except that they lack probabilistic equivalency between groups. These types of experiments often arise in the area of medicine where, for ethical reasons, it is not possible to create a truly controlled group. For example, one would not want to deny all forms of treatment for a life-threatening disease from one group of patients to evaluate the effectiveness of another treatment on a different group of patients. The results of observational studies are considered much less convincing than those of designed experiments, as they are much more prone to selection bias. Researchers attempt to compensate for this with complicated statistical methods such as propensity score matching methods (see hierarchy of evidence). See also quasi-empirical methods
Field experiments
Field experiments are so named in order to draw a contrast with laboratory experiments. Often used in the social sciences, and especially in economic analyses of education and health interventions, field experiments have the advantage that outcomes are observed in a natural setting rather than in a contrived laboratory environment. However, like natural experiments, field experiments suffer from the possibility of contamination: experimental conditions can be controlled with more precision and certainty in the lab.
Examples
Quotes
- "We have to learn again that science without contact with experiments is an enterprise which is likely to go completely astray into imaginary conjecture." — Hannes Alfven
- "Today's scientists have substituted mathematics for experiments, and they wander off through equation after equation, and eventually build a structure which has no relation to reality." — Nikola Tesla
External links
- Lessons In Electric Circuits - Volume VI - Experiments
- [1] Trochim, William M. Experimental Design. The Research Methods Knowledge Base, 2nd Edition. (version current as of July 11, 2006).
- Description of weird experiments (with film clips)