Systems design
Systems design is the process of defining the architecture, components, modules, interfaces, and data for a system to satisfy specified requirements. Systems design could see it as the application of systems theory to product development. There is some overlap with the disciplines of systems analysis, systems architecture and systems engineering.[1][2]
Overview
If the broader topic of product development "blends the perspective of marketing, design, and manufacturing into a single approach to product development,"[3] then design is the act of taking the marketing information and creating the design of the product to be manufactured. Systems design is therefore the process of defining and developing systems to satisfy specified requirements of the user.
Until the 1990s systems design had a crucial and respected role in the data processing industry. In the 1990s standardization of hardware and software resulted in the ability to build modular systems. The increasing importance of software running on generic platforms has enhanced the discipline of software engineering.
Object-oriented analysis and design methods are becoming the most widely used methods for computer systems design.[citation needed] The UML has become the standard language in object-oriented analysis and design.[citation needed] It is widely used for modeling software systems and is increasingly used for high designing non-software systems and organizations.[citation needed]
Logical design
The logical design of a system pertains to an abstract representation of the data flows, inputs and outputs of the system. This is often conducted via modelling, using an over-abstract (and sometimes graphical) model of the actual system. In the context of systems design are included. Logical design includes ER Diagrams i.e. Entity Relationship Diagrams.
Physical design
The physical design relates to the actual input and output processes of the system. This is laid down in terms of how data is input into a system, how it is verified/authenticated, how it is processed, and how it is displayed as output. In Physical design, following requirements about the system are decided.
- Input requirement,
- Output requirements,
- Storage requirements,
- Processing Requirements,
- System control and backup or recovery.
Put another way, the physical portion of systems design can generally be broken down into three sub-tasks:
- User Interface Design
- Data Design
- Process Design
User Interface Design is concerned with how users add information to the system and with how the system presents information back to them. Data Design is concerned with how the data is represented and stored within the system. Finally, Process Design is concerned with how data moves through the system, and with how and where it is validated, secured and/or transformed as it flows into, through and out of the system. At the end of the systems design phase, documentation describing the three sub-tasks is produced and made available for use in the next phase.
Physical design, in this context, does not refer to the tangible physical design of an information system. To use an analogy, a personal computer's physical design involves input via a keyboard, processing within the CPU, and output via a monitor, printer, etc. It would not concern the actual layout of the tangible hardware, which for a PC would be a monitor, CPU, motherboard, hard drive, modems, video/graphics cards, USB slots, etc. It involves a detailed design of a user and a product database structure processor and a control processor. The H/S personal specification is developed for the proposed system.
Related topics
- Benchmarking — is an effort to evaluate how current systems perform
- Computer programming and debugging in the software world, or detailed design in the consumer, enterprise or commercial world - specifies the final system components.
- Design — designers will produce one or more 'models' of what they see a system eventually looking like, with ideas from the analysis section either used or discarded. A document will be produced with a description of the system, but nothing is specific — they might say 'touchscreen' or 'GUI operating system', but not mention any specific brands;
- Requirements analysis - analyzes the needs of the end users or customers
- Systems architecture - creates a blueprint for the design with the necessary specifications for the hardware, software, people and data resources. In many cases, multiple architectures are evaluated before one is selected.
- System testing - evaluates the system's actual functionality in relation to expected or intended functionality, including all integration aspects.
Alternative design methodologies
Rapid application development (RAD)
Rapid application development (RAD) is a methodology in which a systems designer produces prototypes for an end-user. The end-user reviews the prototype, and offers feedback on its suitability. This process is repeated until the end-user is satisfied with the final system.
Joint application design (JAD)
Joint application design (JAD) is a methodology which evolved from RAD, in which a systems designer consults with a group consisting of the following parties:
- Executive sponsor
- Systems Designer
- Managers of the system
JAD involves a number of stages, in which the group collectively develops an agreed pattern for the design and implementation of the system.
See also
- Architectural pattern (computer science)
- Electronic design automation
- Electronic system level
- Embedded system
- Hypersystems
- Graphical system design
- Operating Systems Design and Implementation
- Structured Systems Analysis and Design Method
- Systems Development Life Cycle
- Systems thinking
References
- ^ This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 2022-01-22.
- ^ This article incorporates public domain material from Dictionary of Military and Associated Terms. United States Department of Defense.
- ^ Ulrich & Eppinger (2000). Product Design & Development. Irwin McGraw-Hill. ISBN 0-07-229647-X.
This article needs additional citations for verification. (April 2013) |
Further reading
- C. West Churchman The Design of Inquiring Systems: Basic Concepts of Systems and Organization. Basic Books, New York, 1971, SBN 465-01608-1
- Levin, Mark Sh., Composite Systems Decisions, Springer, New York, 2006
- Maier, Mark W., and Rechtin, Eberhardt, The Art of Systems Architecting, Second Edition, CRC Press, Boca Raton, 2000
- Saltzer, J.H, et al., End-to-End arguments in Systems Design in: ACM Transactions in Computer Systems Vol. 2, nr 4 (Nov 1984), pp 277–288.
- Ulrich, Karl T. and Eppinger, Steven D., Product Design and Development, Second Edition, Irwin McGraw-Hill, Boston, 2000
External links
- Interactive Systems Design Course by Chris Johnson, 1993