Talk:Microfold cell
This article is or was the subject of a Wiki Education Foundation-supported course assignment. Further details are available on the course page. Student editor(s): Immcarl17 (article contribs).
Physiology Start‑class Mid‑importance | |||||||||||||
|
Medicine Start‑class Low‑importance | ||||||||||
|
I will be working on editing and updating this article as part of an undergraduate level Immunology class assignment.
The section of the Microfold cell article I am most interested in the development section, which happens to also be the section with the least information. I would like to fill this section with information regarding what we know about the development of these cells, but with some context or reference to the research or experimentation used to arrive at these conclusions. I am also hoping to create a figure or adapt a figure from a recent review article so that we have some visualization about the position, location, and thus function of these cells. I am welcome to any feedback or collaboration!
Today, I have drafted a new lead section that incorporates the summary of the proposed changes I have to the development section. I have also summarized some information from other sections of the article that is also reflected in the lead section. Here is a draft of my updated lead section:
Microfold cells (or M cells) are found in the follicle-associated epithelium of the Peyer's patch as well as in bronchus-associated lymphoid tissue (BALT). They transport organisms and particles from the gut lumen to immune cells across the epithelial barrier, and thus are important in stimulating mucosal immunity. Many pathogens including Shigella flexneri, Salmonella typhimurium, and Yersinia pseudotuberculosis, and prions in Bovine spongiform encephalitis enter the gut through the exploitation of M cells. M cells differentiate and mature when they receive signals from the Peyer's patch and these molecular identities of these signals are yet to be uncovered.
Unlike their neighbouring cells, they have the unique ability to take up antigen from the lumen of the small intestine via endocytosis or phagocytosis, and then deliver it via transcytosis to dendritic cells (an antigen presenting cell) and lymphocytes (namely T cells) located in a unique pocket-like structure on their basolateral side.[citation needed]