Jump to content

Sprat

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 76.189.141.88 (talk) at 02:40, 1 January 2019 (As food). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Salted sprats, (Sprattus sprattus)
at Odessa bazaar in Ukraine

A sprat is the common name applied to a group of forage fish belonging to the genus Sprattus in the family Clupeidae. The term also is applied to a number of other small sprat-like forage fish (Clupeoides, Clupeonella, Corica, Ehirava, Hyperlophus, Microthrissa, Nannothrissa, Platanichthys, Ramnogaster, Rhinosardinia, and Stolothrissa). Like most forage fishes, sprats are highly active, small, oily fish. They travel in large schools with other fish and swim continuously throughout the day.[1]

They are recognized for their nutritional value, as they contain high levels of polyunsaturated fats, considered beneficial to the human diet. They are eaten in many places around the world.[2] Sprats are sometimes passed off as other fish; products sold as having been prepared from anchovies (since the 19th century) and others sold as sardines sometimes are prepared from sprats, as the authentic ones once were less accessible. They are known for their smooth flavour and are easy to mistake for baby sardines.

Species

True sprats

True sprats belong to the genus Sprattus in the family Clupeidae. The five species are:

Sprattus species
Common name Scientific name Maximum
length
Common
length
Maximum
weight
Maximum
age
Trophic
level
Fish
Base
FAO ITIS IUCN status
New Zealand blueback sprat Sprattus antipodum (Hector 1872) 12.0 cm 9.0 cm 3.0 [3] [4] Not assessed
Falkland sprat Sprattus fuegensis (Blomefield, 1842) 18.0 cm 15.0 cm 3.4 [5] [6] Not assessed
New Zealand sprat Sprattus muelleri (Klunzinger, 1879) 13.0 cm 10.0 cm 3.0 [7] [8] Not assessed
Australian sprat Sprattus novaehollandiae (Valenciennes, 1847) 14.0 cm 3.0 [9] [10] Not assessed
European sprat* Sprattus sprattus (Linnaeus, 1758) 16.0 cm 12.0 cm 6 years 3.0 [11] [12] [13] Not assessed

* Type species

Other sprats

The term also is commonly applied to a number of other small sprat-like forage fish that share characteristics of the true sprat. Apart from the true sprats, FishBase lists another 48 species whose common names ends with "sprat". Some examples are:

Sprat-like species
Common name Scientific name Maximum
length
Common
length
Maximum
weight
Maximum
age
Trophic
level
Fish
Base
FAO ITIS IUCN status
Black and Caspian Sea sprat Clupeonella cultriventris (Nordmann, 1840) 14.5 cm 10 cm 5 years 3.0 [14] [15] [16] Not assessed

Characteristics

The European sprat, Sprattus sprattus, is the type species for the genus Sprattus.

The average length of time from fertilization to hatching is approximately fifteen days, with environmental factors playing a major role in the size and overall success of the sprat.[17] The development of young larval sprat and reproductive success of the sprat have been largely influenced by environmental factors. Some of these factors that are affecting the sprat can be seen in the Baltic Sea, where specific gravity, water temperature, depth, and other such factors play a role in the success of the sprat. Over the last two decades the amount of sprat has fluctuated, due primarily to availability of zooplankton, a common food source, and also from overall changes in Clupeidae total abundance.[18] Although the overall survival rates of the sprat decreased in the late 1980s and early 1990s, there has been an increase in the last two decades.[18] Recent studies suggesting that there is a progression in the reproductive success of the sprat acknowledge that there has been a significant increase in spawning stock biomass.[19] One of the main concerns for reproductive success for the sprat include winters that are exceedingly cold, as cold temperatures, especially in the Baltic Sea, have been known to affect the development of sprat eggs and larvae.[17]

The metabolic rate of the sprat is highly influenced by environmental factors such as water temperature.[1] Several related fish, such as the Atlantic herring (C. harengus), have a much lower metabolic rate than that of the sprat. Some of the difference may be due to size differences among the related species,[1] but the most important reason for high levels of metabolism for the sprat is their exceedingly high level of activity throughout the day.[1]

Distribution

Fish of the different species of sprat are found in various parts of the world including New Zealand, Australia, and parts of Europe. By far, the most highly studied location where sprat, most commonly Sprattus sprattus, reside is the Baltic Sea, located in Northern Europe. The Baltic Sea provides the sprat with a highly diverse environment, with spatial and temporal potential allowing for successful reproduction.[19] One of the most well-known locations in the Baltic Sea where they forage for their food is the Bornholm Basin, located in the southern portion of the Baltic Sea.[18] Although the Baltic Sea has undergone several ecological changes during the last two decades, the sprat has dramatically increased in population.[20] One of the environmental changes that has occurred in the Baltic Sea since the 1980s includes a decrease in water salinity, due to a lack of inflow from the North Sea that contains high saline and oxygen content.[20]

Ecology

A gannet begins its take off run. It takes a lot of "fuel" to achieve take off for this huge bird. This can be provided for by sprats and other forage fish that are abundant in the summer months.

In the Baltic Sea, cod, herring, and sprat are considered the most important species.[19] Cod is the top predator while the herring and sprat primarily are recognized as prey.[21] This has been proven by many studies that analyze the stomach contents of such fish, often finding contents that immediately signify predation among the species.[19] Although cod primarily feed on adult sprat, sprat tend to feed on cod before the cod have been fully developed. The sprat tends to prey on the cod eggs and larvae.[17] Furthermore, sprat and herring are considered highly competitive for the same resources that are available to them. This is most present in the vertical migration of the two species in the Baltic Sea, where they compete for the limited zooplankton that is available and necessary for their survival.[18]

Sprat are highly selective in their diet and are strict zooplanktivores that do not change their diet as their size increases, like some herring, but include only zooplankton in their diet.[18] They eat various species of zooplankton in accordance to changes in the environment, as temperature and other such factors affect the availability of their food. During autumn, sprat tend to have a diet high in Temora longicornis and Bosmina maritime. During the winter, their diet includes Pesudocalanus elongates.[18] Pseudocalanus is genus of the order calanoida and subclass copepoda that is important to the predation and diet of fish in the Baltic Sea.[22] In both autumn and winter, there has been a tendency for sprat to avoid eating Acartia spp. The main reason for sprat not including Acartia spp. in their diet is that they tend to be very small in size and have a high escape response to predators such as the herring and sprat. Although Acartia spp. may be present in large numbers, they also tend to dwell more toward the surface of the water, whereas the sprat, especially during the day, tend to dwell in deeper waters.[18]

Fisheries

As food

In Northern Europe, European sprats are commonly smoked and preserved in oil, which retains a strong, smoky flavor.

Sprat, if smoked, is considered to be one of the foods highest in purine content.[24] People who suffer from gout or high uric acid in the blood should avoid eating such foods.

Most importantly, sprats contain long-chained polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). They are present in amounts that are comparable to Atlantic salmon, and up to seven times higher in EPA and DHA than common fresh fillets of gilt-head bream. The sprats contain about 1.43 g/100 g of these polyunsaturated fatty acids that have been found to help prevent mental, neural, and cardiovascular diseases.[25]

Notes

  1. ^ a b c d Meskendahl, L., J.-P. Herrmann, and A. Temming. "Effects of Temperature and Body Mass on Metabolic Rates of Sprat, Sprattus Sprattus L." Marine Biology 157.9 (2010): 1917–1927. Academic Search Premier. Web. 26 Nov. 2011. p. 1925 [1]
  2. ^ Sprats Fried in Batter
  3. ^ Froese, Rainer; Pauly, Daniel (eds.). "Sprattus antipodum". FishBase. April 2012 version.
  4. ^ "Sprattus antipodum". Integrated Taxonomic Information System. Retrieved 1 April 2012.
  5. ^ Froese, Rainer; Pauly, Daniel (eds.). "Sprattus fuegensis". FishBase. April 2012 version.
  6. ^ "Sprattus fuegensis". Integrated Taxonomic Information System. Retrieved 1 April 2012.
  7. ^ Froese, Rainer; Pauly, Daniel (eds.). "Sprattus muelleri". FishBase. April 2012 version.
  8. ^ "Sprattus muelleri". Integrated Taxonomic Information System. Retrieved 1 April 2012.
  9. ^ Froese, Rainer; Pauly, Daniel (eds.). "Sprattus novaehollandiae". FishBase. April 2012 version.
  10. ^ "Sprattus novaehollandiae". Integrated Taxonomic Information System. Retrieved 1 April 2012.
  11. ^ Froese, Rainer; Pauly, Daniel (eds.). "Sprattus sprattus". FishBase. April 2012 version.
  12. ^ Sprattus sprattus (Linnaeus, 1758) FAO, Species Fact Sheet. Retrieved April 2012.
  13. ^ "Sprattus sprattus". Integrated Taxonomic Information System. Retrieved 1 April 2012.
  14. ^ Froese, Rainer; Pauly, Daniel (eds.). "Clupeonella cultriventris". FishBase. April 2012 version.
  15. ^ Clupeonella cultriventris (Nordmann, 1840) FAO, Species Fact Sheet. Retrieved April 2012.
  16. ^ "Clupeonella cultriventris". Integrated Taxonomic Information System. Retrieved 1 April 2012.
  17. ^ a b c Nissling, Anders. "Effects Of Temperature On Egg And Larval Survival Of Cod (Gadus Morhua) And Sprat (Sprattus Sprattus) In The Baltic Sea – Implications For Stock Development." Hydrobiologia 514.1-3 (2004): 115-123. Academic Search Premier. Web. 24 Nov. 2011. p. 121 [2][permanent dead link]
  18. ^ a b c d e f g Casini, Michele, Cardinale, Massimiliano, and Arrheni, Fredrik. “Feeding preferences of herring (Clupea harengus) and sprat (Sprattus sprattus) in the southern Baltic Sea.” ICES Journal of Marine Science, 61 (2004): 1267-1277. Science Direct. Web. 22 November 2011. p. 1268. [3]
  19. ^ a b c d Friedrich W. Köster, et al. "Developing Baltic Cod Recruitment Models. I. Resolving Spatial And Temporal Dynamics Of Spawning Stock And Recruitment For Cod, Herring, And Sprat." Canadian Journal of Fisheries & Aquatic Sciences 58.8 (2001): 1516. Academic Search Premier. Web. 21 Nov. 2011. p. 1516. [4][permanent dead link]
  20. ^ a b Casini, Michele, Massimiliano Cardinale, and Joakim Hjelm. "Inter-Annual Variation In Herring, Clupea Harengus, And Sprat, Sprattus Sprattus, Condition In The Central Baltic Sea: What Gives The Tune?." Oikos 112.3 (2006): 638-650. Academic Search Premier. Web. 22 Nov. 2011. p. 638. [5]
  21. ^ Maris Plikshs, et al. "Developing Baltic Cod Recruitment Models. I. Resolving Spatial And Temporal Dynamics Of Spawning Stock And Recruitment For Cod, Herring, And Sprat." Canadian Journal of Fisheries & Aquatic Sciences 58.8 (2001): 1516. Academic Search Premier. Web. 23 Nov. 2011, p.1517 [6]
  22. ^ Renz, Jasmin, Peters, Janna, Hirch, Hans-Jürgen. "Life cycle of Pseudocalanus acuspes Giesbrecht (Copepoda,Calanoida) in the Central Baltic Sea: II. Reproduction, growth and secondary production." Marine Biology, 151 (2007):515-527. Springer Link. Web. 4 December 2011. p. 515 [7]
  23. ^ a b Based on data sourced from the relevant FAO Species Fact Sheets
  24. ^ Various food types and their purine content http://www.acumedico.com/purine.htm
  25. ^ Galina S. Kalachova, et al. "Content of essential polyunsaturated fatty acids in three canned fish species." International Journal of Food Sciences & Nutrition 60.3 (2009): 224-230. Academic Search Premier. EBSCO. Web. 26 Oct. 2011. p.224. [8]

References