Jump to content

Andarine

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 46.252.224.26 (talk) at 11:15, 29 December 2019 (Someone cannot read???). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Andarine
Clinical data
Other namesAcetamidoxolutamide; Androxolutamide; GTx-007; S-4
ATC code
  • None
Legal status
Legal status
Identifiers
  • (2S)-3-(4-acetamido-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.230.653 Edit this at Wikidata
Chemical and physical data
FormulaC19H18F3N3O6
Molar mass441.357 g/mol g·mol−1
3D model (JSmol)
  • FC(F)(F)c1cc(ccc1[N+]([O-])=O)NC(=O)[C@@](O)(COc2ccc(cc2)NC(=O)C)C
  • InChI=1S/C19H18F3N3O6/c1-11(26)23-12-3-6-14(7-4-12)31-10-18(2,28)17(27)24-13-5-8-16(25(29)30)15(9-13)19(20,21)22/h3-9,28H,10H2,1-2H3,(H,23,26)(H,24,27)/t18-/m0/s1 checkY
  • Key:YVXVTLGIDOACBJ-SFHVURJKSA-N checkY
 ☒NcheckY (what is this?)  (verify)

Andarine (developmental code names GTx-007, S-4) is an investigational selective androgen receptor modulator (SARM) developed by GTX, Inc for treatment of conditions such as muscle wasting, osteoporosis and benign prostatic hypertrophy,[1] using the nonsteroidal antiandrogen bicalutamide as a lead compound.[2]

Andarine is an orally active partial agonist of the androgen receptor (AR). It is less potent in both anabolic and androgenic effects than other SARMs. In an animal model of benign prostatic hypertrophy, andarine was shown to reduce prostate weight to 79%, but without producing any reduction in muscle mass or antiandrogenic side effects.[3] This suggests that it is able to competitively block binding of dihydrotestosterone to its receptor targets in the prostate gland, but its partial agonist actions at the AR prevent the side effects associated with the antiandrogens traditionally used for treatment of BPH.[4]

See also

References

  1. ^ Hott JL, Borkman RF (November 1989). "The non-fluorescence of 4-fluorotryptophan". The Biochemical Journal. 264 (1): 297–9. doi:10.1124/jpet.102.040840. PMC 1133577. PMID 2604714.
  2. ^ Chen J, Kim J, Dalton JT (June 2005). "Discovery and therapeutic promise of selective androgen receptor modulators". Molecular Interventions. 5 (3): 173–88. doi:10.1124/mi.5.3.7. PMC 2072877. PMID 15994457.
  3. ^ GGao W, Kearbey JD, Nair VA, Chung K, Parlow AF, Miller DD, Dalton JT (December 2004). "Comparison of the pharmacological effects of a novel selective androgen receptor modulator, the 5alpha-reductase inhibitor finasteride, and the antiandrogen hydroxyflutamide in intact rats: new approach for benign prostate hyperplasia". Endocrinology. 145 (12): 5420–8. doi:10.1210/en.2004-0627. PMC 2098692. PMID 15308613.
  4. ^ Gao W, Kim J, Dalton JT (August 2006). "Pharmacokinetics and pharmacodynamics of nonsteroidal androgen receptor ligands". Pharmaceutical Research. 23 (8): 1641–58. doi:10.1007/s11095-006-9024-3. PMC 2072875. PMID 16841196.