User:Ismoholtto/sandbox
Sources for polar vortex page
https://www.tandfonline.com/doi/full/10.1080/00107514.2015.1029521
https://link.springer.com/content/pdf/10.1007/BF02018348.pdf
mini|Richard Scherhag Richard Theodor Anton Scherhag (* 29. September 1907 in Düsseldorf; † 31. August 1970 in Westerland) war ein deutscher Meteorologe.
Leben
Richard Scherhag wurde 1907 als Sohn eines Düsseldorfer Kaufmanns geboren. Er studierte von 1926 bis 1931 Naturwissenschaften in Bonn, Köln und Berlin und promovierte 1931 bei Heinrich von Ficker mit einer Arbeit über die atmosphärischen Zustände bei Gewittern. Über Essen und die Wetterwarte auf dem Brocken kam er 1933 an die Deutsche Seewarte in Hamburg. Am 1. Oktober 1934 führte er hier die Höhenwetterkarte (500 hPa), am 15. Januar 1938 die Markierung der Fronten in den Bodenwetterkarten ein.[1] 1938 wurde Scherhag als Leiter der Abteilung Höhenwetterdienst an das Reichsamt für Wetterdienst in Berlin versetzt. Hier entwickelte er eine Methode zur empirischen Konstruktion von 24-stündigen Bodenvorhersagekarten mittels grafischer Addition, ein Verfahren, das 25 Jahre lang im praktischen Einsatz war.[2]
Von 1944 bis 1948 schrieb Scherhag, teilweise in amerikanischer Kriegsgefangenschaft,[3] sein Standardwerk Neue Methoden der Wetteranalyse und Wetterprognose. Über den amerikanischen Wetterdienst in Bad Kissingen kam Scherhag an die Freie Universität Berlin und baute ab 1949 des Meteorologische Institut auf. 1951 wurde er zum Professor, 1952 zum Direktor des Instituts ernannt.[2] Bei Radiosondenaufstiegen entdeckte er 1952 das Phänomen der plötzlichen Stratosphärenerwärmung („Berliner Phänomen“). Am 31. Oktober 1952 begründete er die Berliner Wetterkarte, deren Beilagen er als schnelles Publikationsmedium für die Beschreibung aktueller Wetterereignisse oder neuer Erkenntnisse in der Klimaforschung nutzte. 1957 nahm das Meteorologische Institut Berlin unter Scherhags Leitung das erste zivile Wetterradar in Deutschland in Betrieb.[4] In den späten 1960er Jahren befasste er sich mit der drastischen Abkühlung der Polargebiete in den 1950er und 1960er Jahren. Er konnte zeigen, dass die mittlere Temperatur auf Franz-Josef-Land binnen 15 Jahren um 4,5 Grad gesunken war.[2]
Scherhag verfasste bis zu seinem plötzlichen Tod im Jahr 1970 mehr als 220 Publikationen auf den verschiedensten Gebieten der Meteorologie und Klimatologie. Er war Mitglied der Akademie der Wissenschaften und der Literatur in Mainz.
in english
life
Richard Scherhag was born in 1907 as the son of a Düsseldorf businessman. From 1926 to 1931 he studied natural sciences in Bonn, Cologne and Berlin and received his doctorate in 1931 under Heinrich von Ficker with a thesis on the atmospheric conditions in thunderstorms n. Via Essen and the weather station on the Brocken he came to the Deutsche Seewarte in Hamburg in 1933. On October 1st, 1934 he kept the Höhenwetterkarte (500 & nbsp; hPa), on January 15th, 1938 the marking of the [[Front (Meteorology) | Fronts] ] in the ground weather map n. [5] In 1938 Scherhag was appointed head of the high-altitude weather service department at the Reichsamt für Wetterdienst transferred to Berlin. Here he developed a method for the empirical construction of 24-hour soil forecast maps by means of graphical addition, a process that was in practical use for 25 years. [2]
From 1944 to 1948 Scherhag wrote [6] his standard work New Methods of Weather Analysis and Weather Forecasting . Scherhag came to the Free University of Berlin through the American weather service in Bad Kissingen and from 1949 set up the Meteorological Institute. In 1951 he was appointed professor and in 1952 director of the institute. [2] While climbing radiosonde in 1952 he discovered the phenomenon of sudden stratospheric warming ("Berlin phenomenon") . On October 31, 1952, he founded the Berlin Weather Map, the supplements of which he used as a quick publication medium for the description of current weather events or new findings in climate research. In 1957 the Meteorological Institute Berlin under Scherhag's direction put the first civil weather radar in Germany into operation. [7] In the late 1960s, he dealt with the drastic cooling of the polar regions in the 1950s and 1960s. He was able to show that the mean temperature on Franz-Josef-Land had dropped by 4.5 degrees within 15 years. [2]
Until his sudden death in 1970, Scherhag wrote more than 220 publications in various fields of meteorology and climatology. He was a member of the Academy of Sciences and Literature in Mainz.
==
Werke (Auswahl)
- Über die atmosphärischen Zustände bei Gewittern (Unter besonderer Berücksichtigung der Ostgewitter und mehrtägiger Gewitterperioden). Dissertation, Berlin 1931.
- Zur Theorie der Hoch- und Tiefdruckgebiete. Die Bedeutung der Divergenz in Druckfeldern. In: Meteorologische Zeitschrift. Band 51, 1934, S. 129–138 (ins Englische übersetzt und editiert von E. Volken, A. M. Giesche, S. Brönnimann. In: Meteorologische Zeitschrift. Band 25, Nr. 4, 2016, S. 511–519. doi:10.1127/metz/2016/0785):
- Neue Methoden der Wetteranalyse und Wetterprognose. Springer, Berlin 1948. (Nachdruck [2014]: ISBN 978-3-642-49236-5)
- Die explosionsartigen Stratosphärenerwärmungen des Spätwinters 1951/52. In: Berichte des Deutschen Wetterdienstes in der US-Zone. Band 38, 1952, S. 51–63.
- Einführung in die Klimatologie. Westermann, Braunschweig 1960.
Literatur
- Gustav Hofmann (2005), "Scherhag, Richard Theodor Anton", Neue Deutsche Biographie (in German), vol. 22, Berlin: Duncker & Humblot, pp. 694–695; (full text online)
- Jürgen Pelz: Zur Geschichte der Berliner Aërologie. Teil 2 (von 1945 bis 1993). In: Beilage zur Berliner Wetterkarte, SO 12/99, 1999; fu-berlin.de (PDF).
- Horst Malberg: In Memoriam Professor Dr. Richard Scherhag (1907–1970). In: Beilage zur Berliner Wetterkarte, SO 39/07, 2007; fu-berlin.de (PDF).
Weblinks
- Literature by and about Ismoholtto/sandbox in the German National Library catalogue
Einzelnachweise
- ^ Hans Steinhagen: Max Robitsch. Polarforscher und Meteorologe. VerlagsService OderSpree, Jacobsdorf/Mark 2008, ISBN 978-3-939960-06-5, S. 194.
- ^ a b c d e f Horst Malberg: In Memoriam Professor Dr. Richard Scherhag (1907–1970). In: Beilage zur Berliner Wetterkarte. SO 39/07, 2007. Cite error: The named reference "Malberg" was defined multiple times with different content (see the help page).
- ^ Bernd Stiller: Scherhag, R. oder » Der Scherhag «. auf den Seiten des Museums für Meteorologie und Aerologie Lindenberg, abgerufen am 19. Februar 2011
- ^ Template:LuiseBMS
- ^ Hans Steinhagen: Max Robitsch. Polar researcher and meteorologist. VerlagsService OderSpree, Jacobsdorf / Mark 2008, ISBN 978-3-939960-06-5, p. 194.
- ^ Bernd Stiller, partly as an American prisoner of war: "Scherhag, R. or" Der Scherhag "". on the website of the Museum for Meteorology and Aerology Lindenberg, accessed on February 19, 2011
- ^ Template:LuiseBMS
Template:SORTIERUNG:Scherhag, Richard Kategorie:Meteorologe Kategorie:Klimatologe Kategorie:Hochschullehrer (Freie Universität Berlin) Kategorie:Mitglied der Akademie der Wissenschaften und der Literatur Kategorie:Deutscher Kategorie:Geboren 1907 Kategorie:Gestorben 1970 Kategorie:Mann
Brewer–Dobson circulation (BDC) is the meridional (north-south) overturning circulation in the stratosphere that transports air from the equator to the poles. It was proposed by Alan Brewer in 1949 and Gordon Dobson in 1956, to explain why tropical air has less ozone than polar air, even though the tropical stratosphere is where most atmospheric ozone is produced. It is a simple circulation model that posits the existence of a slow current in the winter hemisphere which redistributes air from the tropics to the extratropics. The Brewer–Dobson circulation is driven by atmospheric waves[1] and may be speeding up due to climate change.[2]
COPIED
As discussed in Chapter 5, most ozone production occurs in the tropical stratosphere as the overhead
sun breaks apart oxygen molecules (O2) into oxygen atoms (O), which quickly react with other
O2 molecules to form ozone (O3). The problem with this simplified picture is that most ozone is found
outside the tropics in the higher latitudes rather than in the tropics. That is, most of the ozone is found
outside of its natural tropical stratospheric source region. This higher latitude ozone results from the
slow atmospheric circulation that moves ozone from the tropics where it is produced into the middle
and polar latitudes. This slow circulation is known as the Brewer-Dobson circulation, named after
Brewer and Dobson.
The simple circulation model suggested by Brewer (1949) and Dobson (1956) consists of three basic
parts. The first part is rising tropical motion from the troposphere into the stratosphere. The second part
is poleward transport in the stratosphere. The third part is descending motion in both the stratospheric
middle and polar latitudes, though there are important differences. The middle latitude descending air is
transported back into the troposphere, while the polar latitude descending air is transported into the
polar lower stratosphere, where it accumulates.
This model explains why tropical air is lower in ozone than polar air, even though the source region of
ozone is in the tropics. However, we are getting a bit ahead of ourselves, and it is necessary to look at
the big picture in more detail.
COPIED
Ice–albedo feedback is a positive feedback of the climate where a change in the area of ice caps, glaciers, and sea ice alters the albedo and surface temperature of a planet. Albedo is a measure of the reflectivity of a surface. Ice has a high albedo, which means it is very reflective and up to 90% of incoming solar energy is reflected back to space. Ice–albedo feedback plays an important role in global climate change. For instance at higher latitudes, we see warmer temperatures melt the ice sheets. However, if warm temperatures decrease the ice cover and the area is replaced by water or land the albedo would decrease. This increases the amount of solar energy absorbed, leading to more warming. The effect has mostly been discussed in terms of the recent trend of declining Arctic sea ice. The change in albedo acts to reinforce the initial alteration in ice area leading to more warming. Warming tends to decrease ice cover and hence decrease the albedo, increasing the amount of solar energy absorbed and leading to more warming. In the geologically recent past, the ice-albedo positive feedback has played a major role in the advances and retreats of the Pleistocene (~2.6 Ma to ~10 Ma) ice sheets. Inversely, cooler temperatures increase ice, which increases albedo, leading to more cooling.
Northern Annular Mode (NAM) and Southern Annular Mode (SAM)
The annular modes are naturally occurring, hemispheric-wide patterns of climate variability. On timescales of weeks to months they explain 20-30% of the variability in their respective hemispheres. The Northern Annular Mode or Arctic Oscillation (AO) in the Northern Hemisphere, and the Southern Annular Mode or Antarctic oscillation (AAO) in the southern hemisphere. The annular modes have a strong influence on the temperature and precipitation of mid-to-high latitude land masses, such as Europe and Australia, by altering the average paths of storms. The NAO can be considered a regional index of the AO/NAM[3].
- ^ J.R. Holton (1990), "On the Global Exchange of Mass between the Stratosphere and Troposphere", Journal of the Atmospheric Sciences, 47 (3): 392–395, doi:10.1175/1520-0469(1990)047<0392:OTGEOM>2.0.CO;2
- ^ N.Butchart and A.A. Scaife, Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate
- ^ Thompson, David. "Annular Modes - Introduction". Retrieved 11 February 2020.