Newtonian fluid
ewtonian fluid does not exist.N
This article may be too technical for most readers to understand.(December 2017) |
v in
Definition
An element of a flowing liquid or gas will suffer forces from the surrounding fluid, including viscous stress forces that cause it to gradually deform over time. These forces can be mathematically approximated to first order by a viscous stress tensor, which is usually denoted by .
The deformation of that fluid element, relative to some previous state, can be approximated to first order by a strain tensor that changes with time. The time derivative of that tensor is the strain rate tensor, that expresses how the element's deformation is changing with time; and is also the gradient of the velocity vector field at that point, often denoted .
The tensors and can be expressed by 3×3 matrices, relative to any chosen coordinate system. The fluid is said to be Newtonian if these matrices are related by the equation where is a fixed 3×3×3×3 fourth order tensor, that does not depend on the velocity or stress state of the fluid.
Incompressible isotropic case
For an incompressible and isotropic Newtonian fluid, the viscous stress is related to the strain rate by the simpler equation
where
- is the shear stress ("drag") in the fluid,
- is a scalar constant of proportionality, the shear viscosity of the fluid
- is the derivative of the velocity component that is parallel to the direction of shear, relative to displacement in the perpendicular direction.
If the fluid is incompressible and viscosity is constant across the fluid, this equation can be written in terms of an arbitrary coordinate system as
where
- is the th spatial coordinate
- is the fluid's velocity in the direction of axis
- is the th component of the stress acting on the faces of the fluid element perpendicular to axis .
One also defines a total stress tensor , that combines the shear stress with conventional (thermodynamic) pressure . The stress-shear equation then becomes
or written in more compact tensor notation
where is the identity tensor.
For anisotropic fluids
More generally, in a non-isotropic Newtonian fluid, the coefficient that relates internal friction stresses to the spatial derivatives of the velocity field is replaced by a nine-element viscous stress tensor .
There is general formula for friction force in a liquid: The vector differential of friction force is equal the viscosity tensor increased on vector product differential of the area vector of adjoining a liquid layers and rotor of velocity:
where – viscosity tensor. The diagonal components of viscosity tensor is molecular viscosity of a liquid, and not diagonal components – turbulence eddy viscosity.[1]
Newtonian law of viscosity
The following equation illustrates the relation between shear rate and shear stress:
- ,
where:
- τ is the shear stress;
- μ is the viscosity, and
- is the shear rate.
If viscosity is constant, the fluid is Newtonian.
Power law model
The power law model is used to display the behavior of Newtonian and non-Newtonian fluids and measures shear stress as a function of strain rate.
The relationship between shear stress, strain rate and the velocity gradient for the power law model are:
- ,
where
- is the absolute value of the strain rate to the (n-1) power;
- is the velocity gradient;
- n is the power law index.
If
- n < 1 then the fluid is a pseudoplastic.
- n = 1 then the fluid is a Newtonian fluid.
- n > 1 then the fluid is a dilatant.
Fluid model
The relationship between the shear stress and shear rate in a casson fluid model is defined as follows:
where τ0 is the yield stress and
- ,
where α depends on protein composition and H is the Hematocrit number.
Examples
Water, air, alcohol, glycerol, and thin motor oil are all examples of Newtonian fluids over the range of shear stresses and shear rates encountered in everyday life. Single-phase fluids made up of small molecules are generally (although not exclusively) Newtonian.
See also
References
- ^ Volobuev, A. N. (2012). Basis of Nonsymmetrical Hydromechanics. New York: Nova Science Publishers, Inc. ISBN 978-1-61942-696-2.