Jump to content

Ibuprofen

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Blukens (talk | contribs) at 01:39, 17 February 2007 (Clinical use: typo). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Ibuprofen
Clinical data
Pregnancy
category
  • AU: C
Routes of
administration
Oral, rectal and topical
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability49–73%
Protein binding99%
MetabolismHepatic
Elimination half-life1.8–2 hours
ExcretionRenal
Identifiers
  • 2-[4-(2-methylpropyl)phenyl]propanoic acid
CAS Number
PubChem CID
DrugBank
CompTox Dashboard (EPA)
ECHA InfoCard100.036.152 Edit this at Wikidata
Chemical and physical data
FormulaC13H18O2
Molar mass206.3 g/mol g·mol−1
Melting point76 °C (169 °F)

Ibuprofen (INN) (IPA: [ˈaɪbjuprofɛn]) is a non-steroidal anti-inflammatory drug (NSAID) originally marketed as Nurofen and since under various trademarks including Act-3, Advil, Brufen, Dorival, Herron Blue, Panafen, Motrin, Nuprin and Ipren or Ibumetin (Sweden), Ibuprom (Poland), Moment (Italy). It is used for relief of symptoms of arthritis, primary dysmenorrhoea, fever, and as an analgesic, especially where there is an inflammatory component. Ibuprofen was developed by the research arm of Boots Group.

Clinical use

Low doses of ibuprofen (200 mg, and sometimes 400 mg) are available over the counter (OTC) in most countries. Ibuprofen has a dose-dependent duration of action of approximately 4–8 hours, which is longer than suggested by its short half-life. The recommended dose varies with body mass and indication. Generally, the oral dose is 200–400 mg (5–10 mg/kg in children) every 4–6 hours, up to a usual maximum daily dose of 800–1200 mg. Under medical direction, a maximum daily dose of 3200 mg may sometimes be used. This is a lot of ibuprofen so be careful and ask a doctor before taking maximum doses.

Off-Label and investigational use

  • As with other NSAIDs, ibuprofen may be useful in the treatment of severe orthostatic hypotension.[2]
  • In some studies, ibuprofen showed superior results compared to placebo in the prophylaxis of Alzheimer's disease, when given in low doses over a long time.[3] Further studies are needed to confirm the results before ibuprofen can be recommended for this indication.
  • Ibuprofen has been associated with a lower risk of Parkinson's disease, and may delay or prevent Parkinson's disease. Aspirin, other NSAIDs, and paracetamol had no effect on the risk for Parkinson's.[4] Further research is warranted before recommending ibuprofen for this use.

Ibuprofen lysine

In Europe, Australia, and New Zealand, ibuprofen lysine (ibuprofenlysinat, the lysine salt of ibuprofen) is licensed for treatment of the same conditions as ibuprofen. Ibuprofen lysine has been shown to have a more rapid onset of action compared to base ibuprofen.[5]

Mechanism of action

A bottle of Advil Caplets

Ibuprofen is an NSAID which is believed to work through inhibition of cyclooxygenase (COX), thus inhibiting prostaglandin synthesis. There are at least 2 variants of cyclooxygenase (COX-1 and COX-2). Ibuprofen inhibits both COX-1 and COX-2. It appears that its analgesic, antipyretic, and anti-inflammatory activity are achieved principally through COX-2 inhibition; whereas COX-1 inhibition is responsible for its unwanted effects on platelet aggregation and the GI mucosa.

Side effects

Ibuprofen appears to have the lowest incidence of gastrointestinal adverse drug reactions (ADRs) of all the non-selective NSAIDs. However, this only holds true at lower doses of ibuprofen, so over-the-counter preparations of ibuprofen are generally labelled to advise a maximum daily dose of 1,200 mg.

Main article: Non-steroidal anti-inflammatory drug

Reported adverse drug reactions

Ibuprofen can have the following effects even if as little as 4 tablets are taken:

Common adverse effects include: nausea, dyspepsia, gastrointestinal ulceration/bleeding, raised liver enzymes, diarrhea, headache, dizziness, salt and fluid retention, hypertension.[6]

Infrequent adverse effects include: oesophageal ulceration, heart failure, hyperkalaemia, renal impairment, confusion, bronchospasm, rash.[6]

Very Infrequent adverse effects include Stevens-Johnson syndrome.

Photosensitivity

As with other NSAIDs, ibuprofen has been reported to be a photosensitising agent.[7][8] However, this only rarely occurs with ibuprofen and it is considered to be a very weak photosensitising agent when compared with other members of the 2-arylpropionic acids. This is because the ibuprofen molecule contains only a single phenyl moiety and no bond conjugation, resulting in a very weak chromophore system and a very weak absorption spectrum which does not reach into the solar spectrum.

Cardiovascular risk

Along with several other NSAIDs, ibuprofen has been implicated in elevating the risk of myocardial infarction, particularly among those chronically using high doses.[9]

Stereochemistry

3D model of (R)-ibuprofen

Ibuprofen, like other 2-arylpropionate derivatives (including ketoprofen, flurbiprofen, naproxen, etc) contains a chiral carbon in the α-position of the propionate moiety. As such there are two possible enantiomers of ibuprofen with the potential for different biological effects and metabolism for each enantiomer.

Indeed it was found that (S)-(+)-ibuprofen (dexibuprofen) was the active form both in vitro and in vivo.

It was logical, then, that there was the potential for improving the selectivity and potency of ibuprofen formulations by marketing ibuprofen as a single-enantiomer product (as occurs with naproxen, another NSAID.).

Further in vivo testing, however, revealed the existence of an isomerase which converted (R)-ibuprofen to the active (S)-enantiomer. Thus, due to the expense and futility that might be involved in marketing the single-enantiomer, most ibuprofen formulations currently marketed are racemic mixtures. A notable exception to this is Seractiv (Nordic Drugs).

Human toxicology

Ibuprofen overdose has become common since it was licensed for over-the-counter use. There are many overdose experiences reported in the medical literature.[10] Human response in cases of overdose ranges from absence of symptoms to fatal outcome in spite of intensive care treatment. Most symptoms are an excess of the pharmacological action of ibuprofen and include abdominal pain, nausea, vomiting, drowsiness, dizziness, headache, tinnitus, and nystagmus. Rarely more severe symptoms such as gastrointestinal bleeding, seizures, metabolic acidosis, hyperkalaemia, hypotension, bradycardia, tachycardia, atrial fibrillation, coma, hepatic dysfunction, acute renal failure, cyanosis, respiratory depression, and cardiac arrest have been reported.[11]. The severity of symptoms varies with the ingested dose and the time elapsed, however, individual sensitivity also plays an important role. Generally, the symptoms observed with an overdose of ibuprofen are similar to the symptoms caused by overdoses of other NSAIDs.

There is little correlation between severity of symptoms and measured ibuprofen plasma levels. Toxic effects are unlikely at doses below 100 mg/kg but can be severe above 400 mg/kg;[12] however, large doses do not indicate that the clinical course is likely to be lethal.[13] It is not possible to determine a precise lethal dose, as this may vary with age, weight, and concomitant diseases of the individual patient.

Therapy is largely symptomatic. In cases presenting early, gastric decontamination is recommended. This is achieved using activated charcoal; charcoal absorbs the drug before it can enter the systemic circulation. Gastric lavage is now rarely used, but can be considered if the amount ingested is potentially life threatening and it can be performed within 60 minutes of ingestion. Emesis is not recommended.[14] The majority of ibuprofen ingestions produce only mild effects and the management of overdose is straightforward. Standard measures to maintain normal urine output should be instituted and renal function monitored.[12] Since ibuprofen has acidic properties and is also excreted in the urine, forced alkaline diuresis is theoretically beneficial. However, due to the fact ibuprofen is highly protein bound in the blood, there is minimal renal excretion of unchanged drug. Forced alkaline diuresis is therefore of limited benefit.[15] Symptomatic therapy for hypotension, GI bleeding, acidosis, and renal toxicity may be indicated. Occasionally, close monitoring in an intensive care unit for several days is necessary. If a patient survives the acute intoxication, he/she will usually experience no late sequelae.

Availability

Bottle of Advil liquid capsules.

Ibuprofen was made available under prescription in the United Kingdom in 1969, and in the United States in 1974. In the years since, the good tolerability profile along with extensive experience in the community (otherwise known as Phase IV trials), has resulted in the rescheduling of small packs of ibuprofen to allow availability over-the-counter in pharmacies worldwide, and indeed in supermarkets and other general retailers. In the United States, the Food and Drug Administration approved it for over-the-counter use in 1984. The wider availability has meant that ibuprofen is now almost as commonly used as aspirin and paracetamol (acetaminophen).

See also

References

  1. ^ "FDA-sourced list of all drugs with black box warnings (Use Download Full Results and View Query links.)". nctr-crs.fda.gov. FDA. Retrieved 22 Oct 2023.
  2. ^ Zawada E (1982). "Renal consequences of nonsteroidal antiinflammatory drugs". Postgrad Med. 71 (5): 223–30. PMID 7041104.
  3. ^ Townsend K, Praticò D (2005). "Novel therapeutic opportunities for Alzheimer's disease: focus on nonsteroidal anti-inflammatory drugs". FASEB J. 19 (12): 1592–601. PMID 16195368.
  4. ^ Chen H, Jacobs E, Schwarzschild M, McCullough M, Calle E, Thun M, Ascherio A (2005). "Nonsteroidal antiinflammatory drug use and the risk for Parkinson's disease". Ann Neurol. 58 (6): 963–7. PMID 16240369.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Geisslinger G, Dietzel K, Bezler H, Nuernberg B, Brune K (1989). "Therapeutically relevant differences in the pharmacokinetical and pharmaceutical behavior of ibuprofen lysinate as compared to ibuprofen acid". Int J Clin Pharmacol Ther Toxicol. 27 (7): 324–8. PMID 2777420.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ a b Rossi S, ed. (2004). Australian Medicines Handbook (2004 ed.). Australian Medicines Handbook. ISBN 0-9578521-4-2.
  7. ^ Bergner T, Przybilla B. Photosensitization caused by ibuprofen. J Am Acad Dermatol 1992;26(1):114-6. PMID 1531054
  8. ^ Thomson Healthcare. USP DI Advice for the Patient: Anti-inflammatory Drugs, Nonsteroidal (Systemic) [monograph on the internet]. Bethesda (MD): U.S. National Library of Medicine; c2006 [updated 2006 Jul 28; cited 2006 Aug 5]. Available from: http://www.nlm.nih.gov/medlineplus/druginfo/uspdi/202743.html
  9. ^ Hippisley-Cox J, Coupland C (2005). "Risk of myocardial infarction in patients taking cyclo-oxygenase-2 inhibitors or conventional non-steroidal anti-inflammatory drugs: population based nested case-control analysis". BMJ. 330 (7504): 1366. PMID 15947398.
  10. ^ McElwee NE, Veltri JC, Bradford DC, Rollins DE. (1990). "A prospective, population-based study of acute ibuprofen overdose: complications are rare and routine serum levels not warranted". Ann Emerg Med. 19 (6): 657–62. PMID 2188537.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ Vale JA, Meredith TJ. (1986). "Acute poisoning due to non-steroidal anti-inflammatory drugs. Clinical features and management". Med Toxicol. 1 (1): 12–31. PMID 3537613.
  12. ^ a b Volans G, Hartley V, McCrea S, Monaghan J. (2003). "Non-opioid analgesic poisoning". Clinical Medicine. 3 (2): 119–23. PMID 12737366.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ Seifert SA, Bronstein AC, McGuire T. (2000). "Massive ibuprofen ingestion with survival". J Toxicol Clin Toxicol. 38 (1): 55–7. PMID 10696926.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. ^ "Position paper: Ipecac syrup". J Toxicol Clin Toxicol. 42 (2): 133–43. 2004. PMID 15214617.
  15. ^ Hall AH, Smolinske SC, Conrad FL, Wruk KM, Kulig KW, Dwelle TL, Rumack BH. (1986). "Ibuprofen overdose: 126 cases". Ann Emerg Med. 15 (11): 1308–13. PMID 3777588.{{cite journal}}: CS1 maint: multiple names: authors list (link)

Template:ChemicalSources