Total relation
It has been suggested that this article be merged into Serial relation. (Discuss) Proposed since May 2022. |
In mathematics, a binary relation R ⊆ A×B is total (or left total) if the source set A equals the domain {x : there is a y with xRy }. Conversely, R is called right total if B equals the range {y : there is an x with xRy }.
When f: A → B is a function, the domain of f is all of A, hence f is a total relation. On the other hand, if f is a partial function, then the domain may be a proper subset of A, in which case f is not a total relation.
"A binary relation is said to be total with respect to a universe of discourse just in case everything in that universe of discourse stands in that relation to something else."[1]
Algebraic characterization
Total relations can be characterized algebraically by equalities and inequalities involving composition of relations. To this end, let be a set, let and let For any two sets let be the universal relation between and and let be the identity relation on We use the notation for the converse relation of
- is total iff for any set and any implies [2]: 54
- is total iff : 54
- If is total, then The converse is true if
- If is total, then The converse is true if [note 1][2]: 63
- If is total, then The converse is true if [2][3]
- More generally, if is total, then for any set and any The converse is true if [note 2][2]: 57
Notes
References
- ^ Functions from Carnegie Mellon University
- ^ a b c d Schmidt, Gunther; Ströhlein, Thomas (6 December 2012). Relations and Graphs: Discrete Mathematics for Computer Scientists. Springer Science & Business Media. ISBN 978-3-642-77968-8.
- ^ Gunther Schmidt (2011). Relational Mathematics. Cambridge University Press. doi:10.1017/CBO9780511778810. ISBN 9780511778810. Definition 5.8, page 57.
- Gunther Schmidt & Michael Winter (2018) Relational Topology
- C. Brink, W. Kahl, and G. Schmidt (1997) Relational Methods in Computer Science, Advances in Computer Science, page 5, ISBN 3-211-82971-7
- Gunther Schmidt & Thomas Strohlein (2012)[1987] Relations and Graphs, p. 54, at Google Books
- Gunther Schmidt (2011) Relational Mathematics, p. 57, at Google Books