This is an old revision of this page, as edited by Goodphy(talk | contribs) at 02:58, 26 June 2022(→Definition: Gave an more clear example of the gradient of Q in a 3-dimensional space.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 02:58, 26 June 2022 by Goodphy(talk | contribs)(→Definition: Gave an more clear example of the gradient of Q in a 3-dimensional space.)
An exact differential is sometimes also called a total differential, or a full differential, or, in the study of differential geometry, it is termed an exact form.
Even if we work in three dimensions here, the definitions of exact differentials for other dimensions are structurally similar to the three dimensional definition. In three dimensions, a form of the type
throughout , where are orthogonal coordinates (e.g., Cartesian, cylindrical, or spherical coordinates).[1] In other words, in some open domain of a space, a differential form is an exact differential if it is equal to the general differential of a differentiable function in an orthogonal coordinate system.
Note: In this mathematical expression, the subscripts outside the parenthesis indicate which variables are being held constant during differentiation. Due to the definition of the partial derivative, these subscripts are not required, but they are explicitly shown here as reminders.
Integral path independence
The exact differential for a differentiable scalar function defined in an open domain is equal to , where is the gradient of , represents the scalar product, and is the general differential displacement vector, if an orthogonal coordinate system is used. If is of differentiability class (continuously differentiable), then is a conservative vector field for the corresponding potential by the definition. For three dimensional spaces, expressions such as and can be made.
that does not depend on which integral path between the given path endpoints and is chosen. So it is concluded that the integral of an exact differential is independent of the choice of an integral path between given path endpoints (path independence).
for a simply closed loop with the smooth oriented surface in it. If the open domain is simply connected open space (roughly speaking, a single piece open space without a hole within it), then any irrotational vector field (defined as a vector field which curl is zero, i.e., ) has the path independence by the Stokes' theorem, so the following statement is made; In a simply connected open region, anyvector field that has the path-independence property (so it is a conservative vector field.) must also be irrotational and vise versa. The equality of the path independence and conservative vector fields is shown here.
is exact if and only if has an antiderivative (but not necessarily one in terms of elementary functions). If has an antiderivative and let be an antiderivative of so , then obviously satisfies the condition for exactness. If does not have an antiderivative, then we cannot write with for a differentiable function so is inexact.
Hence, in a simply-connected region R of the xy-plane, a differential form
is an exact differential if and only if the equation
holds. If it is an exact differential so and , then is a differentiable (smoothly continuous) function along and , so . If holds, then and are differentiable (again, smoothly continuous) functions along and respectively, and is only the case.
For three dimensions, in a simply-connected region R of the xyz-coordinate system, by a similar reason, a differential
is an exact differential if and only if between the functions A, B and C there exist the relations
;;
These conditions are equivalent to the following sentence: If G is the graph of this vector valued function then for all tangent vectors X,Y of the surfaceG then s(X, Y) = 0 with s the symplectic form.
These conditions, which are easy to generalize, arise from the independence of the order of differentiations in the calculation of the second derivatives. So, in order for a differential dQ, that is a function of four variables, to be an exact differential, there are six conditions (the combination) to satisfy.
Partial differential relations
If a differentiable function is one-to-one (injective) for each independent variable, e.g., is one-to-one for at a fixed while it is not necessarily one-to-one for , then the following total differentials exist because each independent variable is a differentiable function for the other variables, e.g., .
Substituting the first equation into the second and rearranging, we obtain
Since and are independent variables, and may be chosen without restriction. For this last equation to generally hold, the bracketed terms must be equal to zero.[2] The left bracket equal to zero leads to the reciprocity relation while the right bracket equal to zero goes to the cyclic relation as shown below.
Reciprocity relation
Setting the first term in brackets equal to zero yields
A slight rearrangement gives a reciprocity relation,
There are two more permutations of the foregoing derivation that give a total of three reciprocity relations between , and .
Cyclic relation
The cyclic relation is also known as the cyclic rule or the Triple product rule. Setting the second term in brackets equal to zero yields
Using a reciprocity relation for on this equation and reordering gives a cyclic relation (the triple product rule),
Suppose we have five state functions , and . Suppose that the state space is two-dimensional and any of the five quantities are differentiable. Then by the chain rule