Katherine Faber
Katherine Faber | |
---|---|
Born | Katherine Theresa Faber June 19, 1953 |
Alma mater | |
Spouse | Thomas Felix Rosenbaum |
Scientific career | |
Fields | |
Institutions | |
Doctoral advisor | Anthony G. Evans |
Katherine T. Faber is an American materials scientist and one of the world's foremost experts in material strengthening, ceramic engineering, and mechanical behavior. Faber is the Simon Ramo Professor of Materials Science at the California Institute of Technology (Caltech).[1] Currently, Faber is the faculty representative for the Materials Science option at Caltech. She is also an adjunct professor of Materials Science and Engineering at the McCormick School of Engineering and Applied Science at Northwestern University.[2]
Faber is known for her work in the fracture mechanics of brittle materials and energy-related ceramics and composites, including the Faber-Evans model of crack deflection which is named after her.[3][4][5] Her research encompasses a broad range of topics, from ceramics for thermal and environmental barrier coatings in power generation components to porous solids for filters and flow in medical applications. Faber is the co-founder and co-director of the Northwestern University/Art Institute of Chicago Center for Scientific Studies in the Arts (NU-ACCESS) and also oversees a number of collaborative endeavors, especially with NASA's Jet Propulsion Laboratory.
Biography
Early life and education
Faber was the youngest daughter of an aspiring aeronautical engineer whose education was halted by the Great Depression.[6] As the only one of her siblings who had an interest in the sciences, she was encouraged by her father to pursue an education in engineering. An initial interest in chemistry evolved to an appreciation for ceramic engineering after Faber recognized its potential in solving many engineering problems. Faber eventually obtained her Bachelor of Science in Ceramic Engineering at the New York State College of Ceramics within Alfred University (1975).[2] She completed her Master of Science in Ceramic Science at Penn State University (1978) where she studied phase separation in glasses with Professor Guy Rindone.[2] After graduating with her MS, she worked for a year as a development engineer for The Carborundum Company in Niagara Falls, New York, on the development of silicon carbide for high performance applications such as engines.[7] Following her year in industry, Faber decided to pursue a Ph.D. in Materials Science at the University of California, Berkeley, which she completed in 1982.[2][8]
Teaching, recognition
From 1982 to 1987, Faber served as Assistant and Associate Professor of Ceramic Engineering at the Ohio State University.[9] She participated in the first class of the Defense Science Study Group, a program which introduces outstanding American science and engineering professors to the United States’ security challenges (1985–1988).[10] From 1988 to 2014, she taught as Associate Professor, Professor, and Walter P. Murphy Professor of Materials Science and Engineering at the McCormick School of Engineering at Northwestern University. During her time at Northwestern, she served as the Associate Dean for Graduate Studies and Research, overseeing more than $25 million in faculty research funds.[11] She went on to complete a 5-year term as department chair of Materials Science and Engineering at Northwestern, where she also served as the Chair of the University Materials Council (2001–2002), a collaborative group composed of directors of a number of materials programs from across the US and Canada.[2] Additionally, from 2005 to 2007 she sat on the Scientific Advisory Committee of the Advanced Photon Source at Argonne National Lab.[2] In 2014, she joined the teaching faculty at Caltech.[1]
From 2006 to 2007, Faber served as the President of the American Ceramic Society,[12] and in 2013 was named a Distinguished Life Member in recognition of her notable contributions to the ceramic and glass profession.[12] In 2014, Faber was elected to the American Academy of Arts and Sciences class of fellows.[9]
She has also been recognized with:
- IBM faculty development award (1984–1986)[2]
- National Science Foundation (NSF) Presidential Young Investigator Award (1984–1989)[2]
- Society of Women Engineers Distinguished Educator Award (1995)[2]
- YWCA Achievement Award for Education (1997)[2]
- NSF Creativity Extension Award (2001–2003)[2]
- Fellowship in ASM International (2003)[2]
- Pennsylvania State University College of Earth and Mineral Sciences Charles L. Hosler Alumni Scholar Medal (2004)[2]
- NSF American Competitiveness and Innovation Fellow and Creativity Extension Award (2010)[11]
- Toledo Glass and Ceramics Award, Michigan/Northwest Ohio Section of the American Ceramic Society (2012)[11]
- American Academy of Arts and Sciences (2014)[11]
- American Ceramic Society John Jeppson Award (2015)[13]
Work
Research
Faber's research is focused on fracture in brittle materials and mechanisms by which they can be strengthened and toughened.[1] Her current work comprises research into characterizing the behavior of high-temperature ceramic coatings under cyclic thermal loading, which has applications in improving engine efficiency and wear;[1] and the creation of high-temperature porous ceramics with increased strength and toughness, which have applications in filtration, energy storage, insulation, and medical devices.[1]
Faber heads many collaborative projects, including several with NASA's Jet Propulsion Laboratory (JPL). Her research with JPL encompasses composite systems of graphite and hexagonal boron nitride for Hall-effect thrusters in spacecrafts as well as the study of environmental degradation of composites in space.[14] Her research interests also include silicon-based ceramics and ceramic matrix composites;[1] polymer-derived multifunctional ceramics;[12] graphite- and silicon carbide-based cellular ceramics synthesized from natural scaffolds, such as pyrolyzed wood;[12] and cultural heritage science,[9] with emphasis on porcelains and jades.[10]
Crack Deflection Model
Main Article: Faber-Evans model
Katherine Faber and her PhD advisor, Anthony G. Evans, first introduced a materials of mechanics model designed to predict the enhancement of fracture toughness in ceramics. This is achieved by accounting for crack deflection around second-phase particles prone to microcracking within a matrix.[15] The model considers particle morphology, aspect ratio, spacing, and volume fraction of the second phase. Additionally, it accounts for the decrease in local stress intensity at the crack tip when deflection or bowing of the crack plane occurs.
Faber showed that by utilizing imaging techniques, the actual crack tortuosity can be determined, enabling the direct input of deflection and bowing angles into the model. The subsequent rise in fracture toughness is then contrasted with that of a flat crack in a plain matrix. The degree of toughening hinges on the mismatch strain resulting from thermal contraction incompatibility and the microfracture resistance at the particle/matrix interface.[16] This toughening effect becomes prominent when particles exhibit a narrow size distribution and are suitably sized.
Faber's analysis revealed that fracture toughness, regardless of morphology, is primarily determined by the most severe twisting of the crack front rather than its initial inclination. While the initial tilting of the crack front contributes to significant toughening in the case of disc-shaped particles, the twist component remains the dominant factor in enhancing toughness.[17] Additionally, she showed that the distribution of inter-particle spacing plays a crucial role in the toughening effect of spherical particles. Specifically, the toughness increases when spheres are in close proximity, causing twist angles to approach π/2. These insights by Faber formed the foundation for designing stronger two-phase ceramic materials. The Faber-Evans model is widely used by materials scientists to indicate that materials with approximately equiaxial grains can experience a fracture toughness increase of about twice the grain boundary value due to deflection effects.[18][19]
Initiatives
Faber is the co-founder and co-director of the Northwestern University–Art Institute of Chicago Center for Scientific Studies in the Arts (NU-ACCESS), a collaboration between Northwestern University and the Art Institute of Chicago in which advanced materials characterization and analytical techniques are used to further conservation science for historical artifacts.[2] NU-ACCESS, the first center of its kind, provides opportunities for scientists and scholars from a variety of institutions to make use of the center's facilities to study their collections.[20]
Personal life
Faber is married to condensed matter physicist, and current president of the California Institute of Technology, Thomas F. Rosenbaum.[21] They began their careers at the California Institute of Technology in 2013 after Rosenbaum transitioned from his previous position as the John T. Wilson Distinguished Service Professor of Physics and university provost of The University of Chicago.[22] Together, they have two sons, Daniel and Michael. Apart from her research, Faber is a patron of the arts and is especially drawn to theater and art museums.
Faber and Rosenbaum have established several graduate fellowships and research funding opportunities for students. In 2014, she and Rosenbaum initiated a $100,000 graduate research fellowship at the University of Chicago’s Pritzker School of Molecular Engineering, which provides summer research support to students with the aim of increasing representation of women in STEM fields.[23] Together, they created the Guy Rindone Graduate Research Fund (named after Faber's master’s thesis adviser) to help facilitate the choice of a research topic in the student's graduate education.[24] In 2017, she and her husband became the first to contribute to the Gordon and Betty Moore Graduate Fellowship Match at Caltech, and later initiated the Rosenbaum-Faber Family Graduate Fellowship, which aims to provide graduate students with the freedom to pursue their studies and possibly change their research based on unexpected research results.[25]
See also
Selected publications
Faber has authored over 150 papers, written three book chapters, and edited a book, Semiconductors and Semimetals: The Mechanical Properties of Semiconductors v. 37.[12][26] In 2003, She was recognized by the Institute for Scientific Information as a Highly Cited Author in Materials Science.[2]
- Chari, C. S. and Faber, K. T. (2022) Oxidation resistance of AlN/BN via mullite-type Al₁₈B₄O₃₃. Journal of the European Ceramic Society, 42 (8). pp. 3437–3445. ISSN 0955-2219. doi:10.1016/j.jeurceramsoc.2022.02.037. https://resolver.caltech.edu/CaltechAUTHORS:20220222-706520000
- Chari, C.S., Taylor, Z.W., Bezur, A., Xie, S. and Faber, K.T., 2022. Nanoscale engineering of gold particles in 18th century Böttger lusters and glazes. Proceedings of the National Academy of Sciences, 119(18), p.e2120753119.
- Harder, Bryan J. and Good, Brian and Schmitt, Michael et al. (2022) Deposition of electrically conductive zirconium monoxide via plasma spray-physical vapor deposition. Journal of the American Ceramic Society, 105 (5). pp. 3568–3580. ISSN 0002-7820. doi:10.1111/jace.18309. https://resolver.caltech.edu/CaltechAUTHORS:20220121-733841000
- Arai, Noriaki and Faber, Katherine T. (2021) Freeze-cast honeycomb structures via gravity-enhanced convection. Journal of the American Ceramic Society, 104 (9). pp. 4309–4315. ISSN 0002-7820. doi:10.1111/jace.17871. https://resolver.caltech.edu/CaltechAUTHORS:20210504-120148263
- Kuo, Taijung and Rueschhoff, Lisa M. and Dickerson, Matthew B. et al. (2021) Hierarchical porous SiOC via freeze casting and self-assembly of block copolymers. Scripta Materialia, 191 . pp. 204–209. ISSN 1359-6462. doi:10.1016/j.scriptamat.2020.09.042. https://resolver.caltech.edu/CaltechAUTHORS:20201019-100031049
- Faber, K.T., Casadio, F., Masic, A., Robbiola, L. and Walton, M., 2021. Looking Back, Looking Forward: Materials Science in Art, Archaeology, and Art Conservation. Annual Review of Materials Research, 51, pp. 435–460.
- Brodnik, N.R., Brach, S., Long, C.M., Ravichandran, G., Bourdin, B., Faber, K.T. and Bhattacharya, K., 2021. Fracture Diodes: Directional asymmetry of fracture toughness. Physical Review Letters, 126(2), p. 025503.
- Zeng, Xiaomei and Martinolich, Andrew J. and See, Kimberly A. et al. (2020) Dense garnet-type electrolyte with coarse grains for improved air stability and ionic conductivity. Journal of Energy Storage, 27 . Art. No. 101128. ISSN 2352-152X. doi:10.1016/j.est.2019.101128. https://resolver.caltech.edu/CaltechAUTHORS:20191224-093208324
- Brodnik, N.R., Hsueh, C.J., Faber, K.T., Bourdin, B., Ravichandran, G. and Bhattacharya, K., 2020. Guiding and trapping cracks with compliant inclusions for enhancing toughness of brittle composite materials. Journal of Applied Mechanics, 87(3), p. 031018.
- Sturdy, L.F., Wright, M.S., Yee, A., Casadio, F., Faber, K.T. and Shull, K.R., 2020. Effects of zinc oxide filler on the curing and mechanical response of alkyd coatings. Polymer, 191, p. 122222.
- Brodnik, N. R. and Schmidt, J. and Colombo, P. et al. (2020) Analysis of Multi-scale Mechanical Properties of Ceramic Trusses Prepared from Preceramic Polymers. Additive Manufacturing, 31 . Art. No. 100957. ISSN 2214-8604. doi:10.1016/j.addma.2019.100957. https://resolver.caltech.edu/CaltechAUTHORS:20191120-091827034
- Buannic, L., Naviroj, M., Miller, S.M., Zagorski, J., Faber, K.T. and Llordés, A., 2019. Dense freeze‐cast Li7La3Zr2O12 solid electrolytes with oriented open porosity and contiguous ceramic scaffold. Journal of the American Ceramic Society, 102(3), pp. 1021–1029.
- Tan, W.L., Faber, K.T. and Kochmann, D.M., 2019. In-situ observation of evolving microstructural damage and associated effective electro-mechanical properties of PZT during bipolar electrical fatigue. Acta Materialia, 164, pp. 704–713.
- Stolzenburg, F., Kenesei, P., Almer, J., Lee, K.N., Johnson, M.T. and Faber, K.T., 2016. The influence of calcium–magnesium–aluminosilicate deposits on internal stresses in Yb2Si2O7 multilayer environmental barrier coatings. Acta Materialia, 105, pp. 189–198.
- Naviroj, M., Miller, S.M., Colombo, P. and Faber, K.T., 2015. Directionally aligned macroporous SiOC via freeze casting of preceramic polymers. Journal of the European Ceramic Society, 35(8), pp. 2225–2232.
- Stolzenburg, F., Johnson, M.T., Lee, K.N., Jacobson, N.S. and Faber, K.T., 2015. The interaction of calcium–magnesium–aluminosilicate with ytterbium silicate environmental barrier materials. Surface and Coatings Technology, 284, pp. 44–50.
- Shanti, N.O., Chan, V.W., Stock, S.R., De Carlo, F., Thornton, K. and Faber, K.T., 2014. X-ray micro-computed tomography and tortuosity calculations of percolating pore networks. Acta Materialia, 71, pp. 126–135.
- Chen-Wiegart, Y.C.K., Liu, Z., Faber, K.T., Barnett, S.A. and Wang, J., 2013. 3D analysis of a LiCoO2–Li (Ni1/3Mn1/3Co1/3) O2 Li-ion battery positive electrode using x-ray nano-tomography. Electrochemistry Communications, 28, pp. 127–130.
- Liu, Z., Cronin, J.S., Yu-chen, K., Wilson, J.R., Yakal-Kremski, K.J., Wang, J., Faber, K.T. and Barnett, S.A., 2013. Three-dimensional morphological measurements of LiCoO2 and LiCoO2/Li (Ni1/3Mn1/3Co1/3) O2 lithium-ion battery cathodes. Journal of Power Sources, 227, pp. 267–274.
- Harder, B.J., Ramìrez‐Rico, J., Almer, J.D., Lee, K.N. and Faber, K.T., 2011. Chemical and mechanical consequences of environmental barrier coating exposure to calcium–magnesium–aluminosilicate. Journal of the American Ceramic Society, 94, pp.s178-s185.
- Johnson, M.T. and Faber, K.T., 2011. Catalytic graphitization of three-dimensional wood-derived porous scaffolds. Journal of Materials Research, 26(1), pp. 18–25.
- Kaul, V.S., Faber, K.T., Sepulveda, R., de Arellano López, A.R. and Martinez-Fernandez, J., 2006. Precursor selection and its role in the mechanical properties of porous SiC derived from wood. Materials Science and Engineering: A, 428(1–2), pp. 225–232.
- Seitz, M.E., Burghardt, W.R., Faber, K.T. and Shull, K.R., 2007. Self-assembly and stress relaxation in acrylic triblock copolymer gels. Macromolecules, 40(4), pp. 1218–1226.
- Pappacena, K.E., Faber, K.T., Wang, H. and Porter, W.D., 2007. Thermal conductivity of porous silicon carbide derived from wood precursors. Journal of the American Ceramic Society, 90(9), pp. 2855–2862.
- Su, Y.J., Trice, R.W., Faber, K.T., Wang, H. and Porter, W.D., 2004. Thermal conductivity, phase stability, and oxidation resistance of Y3Al5O12 (YAG)/Y2O3–ZrO2 (YSZ) thermal-barrier coatings. Oxidation of metals, 61(3), pp. 253–271.
- Trice, R.W., Su, Y.J., Mawdsley, J.R., Faber, K.T., Arellano-López, D., Wang, H. and Porter, W.D., 2002. Effect of heat treatment on phase stability, microstructure, and thermal conductivity of plasma-sprayed YSZ. Journal of materials science, 37(11), pp. 2359–2365.
References
- ^ a b c d e f "Faber Research Group". faber.caltech.edu. Retrieved 2019-12-02.
- ^ a b c d e f g h i j k l m n o "Faber, Katherine | Faculty | Northwestern Engineering". www.mccormick.northwestern.edu. Retrieved 2019-12-02.
- ^ "Caltech Division of Engineering and Applied Science | Katherine T. Faber". Caltech Division of Engineering and Applied Science. Retrieved 2022-10-19.
- ^ "Caltech Materials Science | News | Professor Faber Receives the John Jeppson Award". Caltech Materials Science. Retrieved 2022-10-23.
- ^ Kamble, Mithil; Lakhnot, Aniruddha Singh; Koratkar, Nikhil; Picu, Catalin R. (2020-06-01). "Heterogeneity-induced mesoscale toughening in polymer nanocomposites". Materialia. 11: 100673. doi:10.1016/j.mtla.2020.100673. ISSN 2589-1529.
- ^ "Katherine Faber". EngineerGirl. Retrieved 2022-10-30.
- ^ "Katherine Faber". EngineerGirl. Retrieved 2021-08-09.
- ^ Hatch, Sybil (2006). Changing Our World: True Stories of Women Engineers (1st ed.). Reston, VA: American Society of Civil Engineers. ISBN 978-0-7844-0841-4.
- ^ a b c "Katherine T. Faber". The American Ceramic Society. Retrieved 2019-12-02.
- ^ a b Madsen, Lynnette D. 1963– VerfasserIn. (February 2016). Successful women ceramic and glass scientists and engineers 100 inspirational profiles. ISBN 978-1-118-73360-8. OCLC 953526292.
{{cite book}}
:|last=
has generic name (help)CS1 maint: numeric names: authors list (link) - ^ a b c d Madsen, Lynnette (2016). Successful Women Ceramic and Glass Scientists and Engineers: 100 Inspirational Profiles (1st ed.). Hoboken, NJ: John Wiley & Sons, Inc. ISBN 978-1-118-73360-8.
- ^ a b c d e "The American Ceramic Society announces selection of Faber, Gauckler, and Messing as 2013 Distinguished Life Members". The American Ceramic Society. 2013-07-22. Retrieved 2019-12-02.
- ^ "John Jeppson Award Archives". The American Ceramic Society. Retrieved 2022-10-23.
- ^ Chari, Celia S.; McEnerney, Bryan W.; Hofer, Richard R.; Wollmershauser, James A.; Gorzkowski, Edward P.; Faber, Katherine T. (2023). "High‐temperature carbothermal synthesis and characterization of graphite/h‐BN bimaterials". Journal of the American Ceramic Society. 106 (4): 2225–2239. doi:10.1111/jace.18927. ISSN 0002-7820.
- ^ Faber, K. T.; Evans, A. G. (1983-04-01). "Crack deflection processes—I. Theory". Acta Metallurgica. 31 (4): 565–576. doi:10.1016/0001-6160(83)90046-9. ISSN 0001-6160.
- ^ Faber, K. T.; Evans, A. G. (1983-04-01). "Crack deflection processes—II. Experiment". Acta Metallurgica. 31 (4): 577–584. doi:10.1016/0001-6160(83)90047-0. ISSN 0001-6160.
- ^ Faber, K.T.; Evans, Anthony G. (1983). "Intergranular Crack-Deflection Toughening in Silicon Carbide". Journal of the American Ceramic Society. 66 (6): C–94–C-95. doi:10.1111/j.1151-2916.1983.tb10084.x. ISSN 0002-7820.
- ^ Liu, Haiyan; Weisskopf, Karl-L.; Petzow, Gunter (1989). "Crack Deflection Process for Hot-Pressed Whisker-Reinforced Ceramic Composites". Journal of the American Ceramic Society. 72 (4): 559–563. doi:10.1111/j.1151-2916.1989.tb06175.x. ISSN 0002-7820.
- ^ Carter, David H.; Hurley, George F. (1987). "Crack Deflection as a Toughening Mechanism in SiC-Whisker-Reinforced MoSi2". Journal of the American Ceramic Society. 70 (4): C–79-C-81. doi:10.1111/j.1151-2916.1987.tb04992.x. ISSN 0002-7820.
- ^ "Center for Scientific Studies in the Arts - Northwestern University". scienceforart.northwestern.edu. Retrieved 2023-03-31.
- ^ "Caltech Environmental Science and Engineering | News | Caltech Names Ninth President". Caltech Environmental Science and Engineering. Retrieved 2022-10-30.
- ^ https://www.jpl.nasa.gov. "Caltech Announces New President". NASA Jet Propulsion Laboratory (JPL). Retrieved 2022-11-05.
{{cite web}}
: External link in
(help)|last=
- ^ "Rosenbaum-Faber gift to support women in STEM fields through Pritzker School of Molecular Engineering | Pritzker School of Molecular Engineering | The University of Chicago". pme.uchicago.edu. Retrieved 2023-02-18.
- ^ "Couple creates graduate research fund in honor of former Penn State professor | Penn State University". www.psu.edu. Retrieved 2023-02-18.
- ^ "Funding the Future". Caltech Campaign. Retrieved 2022-10-30.
- ^ Faber, KAtherine T. Molloy, Kevin J. (1992). The mechanical properties of semiconductors. Academic Press. ISBN 978-0-08-086434-1. OCLC 646758339.
{{cite book}}
: CS1 maint: multiple names: authors list (link)
- Living people
- Women materials scientists and engineers
- American materials scientists
- California Institute of Technology faculty
- Alfred State College alumni
- Penn State College of Earth and Mineral Sciences alumni
- University of California, Berkeley alumni
- Northwestern University faculty
- 21st-century American scientists
- 21st-century American women scientists
- 20th-century American scientists
- 20th-century American women scientists
- American women academics
- 1953 births