Jump to content

Cassini and Catalan identities

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Dutch1001b (talk | contribs) at 06:37, 3 October 2023 (Article gives some history on Catalan's identity and applications.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Cassini's identity (sometimes called Simson's identity) and Catalan's identity are mathematical identities for the Fibonacci numbers. Cassini's identity, a special case of Catalan's identity, states that for the nth Fibonacci number,

Note here is taken to be 0, and is taken to be 1.

Catalan's identity generalizes this:

Vajda's identity generalizes this:

History

Cassini's formula was discovered in 1680 by Giovanni Domenico Cassini, then director of the Paris Observatory, and independently proven by Robert Simson (1753).[1] However Johannes Kepler presumably knew the identity already in 1608.[2] Eugène Charles Catalan found the identity named after him in 1879.[1] The British mathematician Steven Vajda (1901–95) published a book on Fibonacci numbers (Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, 1989) which contains the identity carrying his name.[3][4] However the identity was already published in 1960 by Dustan Everman as problem 1396 in The American Mathematical Monthly.[1]

Proof of Cassini identity

Proof by matrix theory

A quick proof of Cassini's identity may be given (Knuth 1997, p. 81) by recognising the left side of the equation as a determinant of a 2×2 matrix of Fibonacci numbers. The result is almost immediate when the matrix is seen to be the nth power of a matrix with determinant −1:

Proof by induction

Consider the induction statement:

The base case is true.

Assume the statement is true for . Then:

so the statement is true for all integers .

Proof of Catalan identity

We use Binet's formula, that , where and .

Hence, and .

So,

Using ,

and again as ,

The Lucas number is defined as , so

Because

Cancelling the 's gives the result.

Notes

  1. ^ a b c Thomas Koshy: Fibonacci and Lucas Numbers with Applications. Wiley, 2001, ISBN 9781118031315, pp. 74-75, 83, 88
  2. ^ Miodrag Petkovic: Famous Puzzles of Great Mathematicians. AMS, 2009, ISBN 9780821848142, S. 30-31
  3. ^ Douglas B. West: Combinatorial Mathematics. Cambridge University Press, 2020, p. 61
  4. ^ Steven Vadja: Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications. Dover, 2008, ISBN 978-0486462769, p. 28 (original publication 1989 at Ellis Horwood)

References