Cassini and Catalan identities
Cassini's identity (sometimes called Simson's identity) and Catalan's identity are mathematical identities for the Fibonacci numbers. Cassini's identity, a special case of Catalan's identity, states that for the nth Fibonacci number,
Note here is taken to be 0, and is taken to be 1.
Catalan's identity generalizes this:
Vajda's identity generalizes this:
History
Cassini's formula was discovered in 1680 by Giovanni Domenico Cassini, then director of the Paris Observatory, and independently proven by Robert Simson (1753).[1] However Johannes Kepler presumably knew the identity already in 1608.[2] Eugène Charles Catalan found the identity named after him in 1879.[1] The British mathematician Steven Vajda (1901–95) published a book on Fibonacci numbers (Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, 1989) which contains the identity carrying his name.[3][4] However the identity was already published in 1960 by Dustan Everman as problem 1396 in The American Mathematical Monthly.[1]
Proof of Cassini identity
Proof by matrix theory
A quick proof of Cassini's identity may be given (Knuth 1997, p. 81) by recognising the left side of the equation as a determinant of a 2×2 matrix of Fibonacci numbers. The result is almost immediate when the matrix is seen to be the nth power of a matrix with determinant −1:
Proof by induction
Consider the induction statement:
The base case is true.
Assume the statement is true for . Then:
so the statement is true for all integers .
Proof of Catalan identity
We use Binet's formula, that , where and .
Hence, and .
So,
Using ,
and again as ,
The Lucas number is defined as , so
Because
Cancelling the 's gives the result.
Notes
- ^ a b c Thomas Koshy: Fibonacci and Lucas Numbers with Applications. Wiley, 2001, ISBN 9781118031315, pp. 74-75, 83, 88
- ^ Miodrag Petkovic: Famous Puzzles of Great Mathematicians. AMS, 2009, ISBN 9780821848142, S. 30-31
- ^ Douglas B. West: Combinatorial Mathematics. Cambridge University Press, 2020, p. 61
- ^ Steven Vadja: Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications. Dover, 2008, ISBN 978-0486462769, p. 28 (original publication 1989 at Ellis Horwood)
References
- Knuth, Donald Ervin (1997), The Art of Computer Programming, Volume 1: Fundamental Algorithms, The Art of Computer Programming, vol. 1 (3rd ed.), Reading, Mass: Addison-Wesley, ISBN 0-201-89683-4
- Simson, R. (1753). "An Explication of an Obscure Passage in Albert Girard's Commentary upon Simon Stevin's Works". Philosophical Transactions of the Royal Society of London. 48: 368–376. doi:10.1098/rstl.1753.0056.
- Tuenter, Hans J. H. (2022). "Fibonacci Summation Identities arising from Catalan's Identity". The Fibonacci Quarterly. 60 (4): 312–319. MR 4539699.
- Werman, M.; Zeilberger, D. (1986). "A bijective proof of Cassini's Fibonacci identity". Discrete Mathematics. 58 (1): 109. doi:10.1016/0012-365X(86)90194-9. MR 0820846.