Jump to content

1-Octene

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by OAbot (talk | contribs) at 13:48, 8 November 2023 (Open access bot: doi updated in citation with #oabot.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

1-Octene
1-Octene
1-Octene molecule
Names
Preferred IUPAC name
Oct-1-ene
Other names
Octene-1, octylene; 1-n-octene; hexylethylene; oct-1-ene; octene; caprylene
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.003.540 Edit this at Wikidata
UNII
  • InChI=1S/C8H16/c1-3-5-7-8-6-4-2/h3H,1,4-8H2,2H3 checkY
    Key: KWKAKUADMBZCLK-UHFFFAOYSA-N checkY
  • InChI=1/C8H16/c1-3-5-7-8-6-4-2/h3H,1,4-8H2,2H3
    Key: KWKAKUADMBZCLK-UHFFFAOYAN
  • C=CCCCCCC
Properties
C8H16
Molar mass 112.24 g/mol
Density 0.715 g/cm3
Melting point −101.7 °C (−151.1 °F; 171.5 K)[1]
Boiling point 121 °C (250 °F; 394 K)[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

1-Octene is an organic compound with a formula CH2CHC6H13. The alkene is classified as a higher olefin and alpha-olefin, meaning that the double bond is located at the alpha (primary) position, endowing this compound with higher reactivity and thus useful chemical properties. 1-Octene is one of the important linear alpha olefins in industry. It is a colourless liquid.

Synthesis

In industry, 1-octene is commonly manufactured by two main routes: oligomerization of ethylene and by Fischer–Tropsch synthesis followed by purification. Another route to 1-octene that has been used commercially on a small scale is dehydration of alcohols. Prior to the 1970s, 1-octene was also manufactured by thermal cracking of waxes, whereas linear internal octenes were also manufactured by chlorination/dehydrochlorination of linear alkanes.

There are five commercial processes that oligomerize ethylene to 1-octene. Four of these processes produce 1-octene as a part of a wide distribution of alpha-olefins. In typical circumstances, 1-hexene content of the entire distribution of alpha-olefins ranges from about 25% of the distribution in the Ethyl (Innovene) process to about 8% of distribution in some modes of the Gulf (CP Chemicals) and Idemitsu processes.

The only commercial process to isolate 1-octene from a wide mixture of C8 hydrocarbons is practiced by Sasol, a South African oil and gas and petrochemical company. For commercial purposes, Sasol employs Fischer–Tropsch synthesis to make fuels from synthesis gas derived from coal and recovers 1-octene from these fuel streams, where the initial 1-octene concentration in a narrow distillation cut may be 60%, with the remainder being vinylidenes, linear and branched internal olefins, linear and branched paraffins, alcohols, aldehydes, carboxylic acids, and aromatic hydrocarbons.

Another route to 1-octene involves butadiene telomerization of butadiene. This technology was commercialized by Dow in a facility in Tarragona. 1-Methoxy- 2,7-octadiene is an intermediate in this process.[2]

Yet another route converts 1-heptene to 1-octene plant based on a Fischer-Tropsch-derived C7 olefin stream (Sasol, Secunda).

Other 1-octene technologies exist based on selective tetramerisation of ethylene.[3]

Applications

The main use of 1-octene is as a comonomer in production of polyethylene. High-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) use approximately 2–4% and 8–10% of comonomers, respectively.

Another significant use of 1-octene is for production of linear aldehyde via oxo synthesis (hydroformylation) to give the C9 aldehyde (nonanal). Oxidation of this aldehyde gives the short-chain fatty acid nonanoic acid. Hydrogenation of the same aldehyde gives the fatty alcohol 1-nonanol, which is used as a plasticizer.

References

  1. ^ a b "1-Octene".
  2. ^ Yang, Ji; Wang, Peng; Neumann, Helfried; Jackstell, Ralf; Beller, Matthias (2023). "Industrially applied and relevant transformations of 1,3-butadiene using homogeneous catalysts". Industrial Chemistry & Materials. 1 (2): 155–174. doi:10.1039/D3IM00009E. S2CID 258122761.
  3. ^ Bollmann, Annette; Blann, Kevin; Dixon, John T.; Hess, Fiona M.; Killian, Esna; Maumela, Hulisani; McGuinness, David S.; Morgan, David H.; Neveling, Arno; Otto, Stefanus; Overett, Matthew; Slawin, Alexandra M. Z.; Wasserscheid, Peter; Kuhlmann, Sven (2004). "Ethylene Tetramerization: A New Route to Produce 1-Octene in Exceptionally High Selectivities". J. Am. Chem. Soc. 126 (45): 14712–14713. doi:10.1021/ja045602n. PMID 15535683.