Jump to content

Affine q-Krawtchouk polynomials

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by BD2412 (talk | contribs) at 19:14, 18 December 2023 (clean up spacing around commas and other punctuation fixes, replaced: ,N → , N, ,S → , S, ,q → , q (4)). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, the affine q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Carlitz and Hodges. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Definition

[edit]

The polynomials are given in terms of basic hypergeometric functions by [1]

Relation to other polynomials

[edit]

affine q-Krawtchouk polynomials → little q-Laguerre polynomials

.

References

[edit]
  1. ^ Roelof Koekoek, Hypergeometric Orthogonal Polynomials and its q-Analogues, p. 501, Springer, 2010
  • Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR 2128719
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Affine q-Krawtchouk polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  • Stanton, Dennis (1981), "Three addition theorems for some q-Krawtchouk polynomials", Geometriae Dedicata, 10 (1): 403–425, doi:10.1007/BF01447435, ISSN 0046-5755, MR 0608153, S2CID 119838893