Jump to content

Sum of two cubes

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by JBW (talk | contribs) at 23:58, 25 February 2024 (Removing a drive-by tag from over a year ago. If you have found that there are sources which you think should be added to the article then add them: don't post a note saying that you think they should be added and then go away and forget about it, without even giving other editors a clue as to what or where the sources are which you found. (The fact that the tag has been here for so long without effect is a typical illustration of how much good these tags usually achieve.)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Visual proof of the formulas for the sum and difference of two cubes

In mathematics, the sum of two cubes is a cubed number added to another cubed number.

Factorization

Every sum of cubes may be factored according to the identity in elementary algebra.[1]

Binomial numbers are the general of this factorization to higher odd powers.

"SOAP" method

The mnemonic "SOAP", standing for "Same, Opposite, Always Positive", is sometimes used to memorize the correct placement of the addition and subtraction symbols while factorizing cubes.[2] When applying this method to the factorization, "Same" represents the first term with the same sign as the original expression, "Opposite" represents the second term with the opposite sign as the original expression, and "Always Positive" represents the third term and is always positive.

original
sign
Same Opposite Always
Positive

Proof

Starting with the expression, is multiplied by a and b[1] By distributing a and b to , one get[1] and by canceling the alike terms, one get[1]

Similarly for the difference of cubes,

Fermat's last theorem

Fermat's last theorem in the case of exponent 3 states that the sum of two non-zero integer cubes does not result in a non-zero integer cube. The first recorded proof of the exponent 3 case was given by Euler.[3]

Taxicab and Cabtaxi numbers

Taxicab numbers are numbers that can be expressed as a sum of two positive integer cubes in n distinct ways. The smallest taxicab number, after Ta(1), is 1729,[4] expressed as

or

The smallest taxicab number expressed in 3 different ways is 87,539,319, expressed as

, or

Cabtaxi numbers are numbers that can be expressed as a sum of two positive or negative integers or 0 cubes in n ways. The smallest cabtaxi number, after Cabtaxi(1), is 91,[5] expressed as:

or

The smallest Cabtaxi number expressed in 3 different ways is 4104,[6] expressed as

, or

See also

References

  1. ^ a b c d McKeague, Charles P. (1986). Elementary Algebra (3rd ed.). Academic Press. p. 388. ISBN 0-12-484795-1.
  2. ^ Kropko, Jonathan (2016). Mathematics for social scientists. Los Angeles, LA: Sage. p. 30. ISBN 9781506304212.
  3. ^ Dickson, L. E. (1917). "Fermat's Last Theorem and the Origin and Nature of the Theory of Algebraic Numbers". Annals of Mathematics. 18 (4): 161–187. doi:10.2307/2007234. ISSN 0003-486X. JSTOR 2007234.
  4. ^ "A001235 - OEIS". oeis.org. Retrieved 2023-01-04.
  5. ^ Schumer, Peter (2008). "Sum of Two Cubes in Two Different Ways". Math Horizons. 16 (2): 8–9. JSTOR 25678781.
  6. ^ Silverman, Joseph H. (1993). "Taxicabs and Sums of Two Cubes". The American Mathematical Monthly. 100 (4): 331–340. doi:10.2307/2324954. ISSN 0002-9890. JSTOR 2324954.

Further reading