Jump to content

Tetrasilane

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by OIM20 (talk | contribs) at 12:19, 2 March 2024 (References: Fixed url=value x2. Fixed multiple authors in last name field x4.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Tetrasilane
Names
IUPAC name
Tetrasilane
Other names
n-Tetrasilane
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.132.456 Edit this at Wikidata
EC Number
  • 616-515-4
UNII
  • InChI=1S/H10Si4/c1-3-4-2/h3-4H2,1-2H3
    Key: MBDFFBCLMHNNID-UHFFFAOYSA-N
  • [SiH3][SiH2][SiH2][SiH3]
Properties
H10Si4
Molar mass 122.420 g·mol−1
Appearance colourless liquid that self ignite in air[1]
Density 0.792 g·cm−3[2]
Melting point −89.9 °C[2]
Boiling point 108.1 °C[2]
reacts[1]
Hazards
GHS labelling:
GHS02: Flammable
Danger
H250
Related compounds
Related compounds
butane
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tetrasilane is a silane with the structure formula SiH3–(SiH2)2–SiH3. It is the silane analog of butane.

Preparation

Tetrasilane can be prepared by reacting magnesium silicide (Mg2Si) with acids like 20% phosphoric acid in 50–60 °C.[3]

The reaction can produce silanes up to n=15. The reaction of magnesium silicide with 25% hydrochloric acid produces 40% monosilane, 30% disilane, 15% trisilane, 10% tetrasilane and 5% higher silanes.[4] The mixture can be separated by fractional distillation.

In addition, higher silanes can also be obtained by discharges monosilane:[3]

Properties

Tetrasilane is a colourless, pyrophoric liquid that has a disgusting odour. Even below 54 °C, it will still spontaneous combust.[1] It is even more unstable than trisilane, slowly decomposing at room temperature, releasing hydrogen and forming shorter chain silanes.[5]

Reactions

Photochemical disproportionation of tetrasilane will produce 3-silylpentasilane and disilane.[6]

With the presence of aluminium chloride, heating tetrasilane in xylene will allow isomerization to isotetrasilane.[7]

References

  1. ^ a b c Material Safety Data Sheet for Tetrasilane (Si4H10) (PDF-Datei)
  2. ^ a b c Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. p. 81. ISBN 0-8493-0486-5.
  3. ^ a b Steudel, Ralf (2014), Chemie der Nichtmetalle: Synthesen - Strukturen - Bindung – Verwendung (in German), De Gruyter, pp. 294–295, ISBN 978-3-11-030797-9
  4. ^ Wiberg, Egon (2011), Lehrbuch der Anorganischen Chemie: Mit einem Anhang: Chemiegeschichte (in German), Walter de Gruyter, pp. 319–320, ISBN 978-3-11-023832-7
  5. ^ Stock, Alfred; Stiebeler, Paul; Zeidler, Friedrich (1923-07-04), "Siliciumwasserstoffe, XVI.: Die höheren Siliciumhydride", Berichte der Deutschen Chemischen Gesellschaft (in German), vol. 56, no. 7, pp. 1695–1705, doi:10.1002/cber.19230560735
  6. ^ Fehér, F.; Fischer, I. (March 1976), "Beiträge zur Chemie des Siliciums und Germaniums, XXVIII. Die photochemische Disproportionierung von n-Tetrasilan, Darstellung und Eigenschaften von 3-Silylpentasilan", Zeitschrift für anorganische und allgemeine Chemie (in German), vol. 421, no. 1, pp. 9–14, doi:10.1002/zaac.19764210103
  7. ^ Fehér, Franz; Ocklenburg, Franz; Skrodzki, Dieter (June 2014). "Beiträge zur Chemie des Siliciums und Germaniums, XXXII, Isomerisierung von höheren Silanen mit Aluminiumchlorid". Zeitschrift fur Naturforschung B. 35 (7): 869–872. doi:10.1515/znb-1980-0715 – via ResearchGate.