Jump to content

Template:Numbered block/doc

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Jonesey95 (talk | contribs) at 05:15, 20 April 2024 (Fix Linter errors. Span tags can't wrap block content.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

This template creates a numbered block which is usually used to number mathematical formulae. This template can be used together with {{EquationRef}} and {{EquationNote}} to produce nicely formatted numbered equations if a back reference to an equation is wanted.

Parameters

Command: {{NumBlk|<1>|<2>|<3>|RawN=<>|LnSty=<>|Border=<>}}

Parameters {{{1}}}, {{{2}}}, and {{{3}}} of this template are required. In addition, there are three optional parameters {{{RawN}}}, {{{LnSty}}} and {{{Border}}}.

{{{1}}}: Specify indentation. The more colons (:) you put, the further indented the block will be, up to a limit of 20. This parameter can be empty if no indentation is needed.
{{{2}}}: The body or content of the block.
{{{3}}}: Specify the block number.
{{{RawN}}}: If a non-empty non-whitespace value, no extra formatting will be applied to the block number.
{{{LnSty}}}: Specify the line style.
{{{Border}}}: If set, put a box around the equation. (Experimental.)

Examples

Equations may render HTML

{{NumBlk|:|<math>y=ax+b</math>|Eq. 3}}

{{NumBlk|:|<math>ax^2+bx+c=0</math>|Eq. 3}}

{{NumBlk|:|<math>\Psi(x_1,x_2)=U(x_1)V(x_2)</math>|2}}

Indentation

{{NumBlk||<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3.5}}

{{NumBlk|:|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|1}}

{{NumBlk|::|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|13.7}}

{{NumBlk|:::|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|1.2}}

Formatting of equation number

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=3.5|RawN=.}}

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<3.5>|RawN=.}}

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=[3.5]|RawN=.}}

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3='''[3.5]'''|RawN=.}}

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>}}

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.}}

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<math>(3.5)</math>|RawN=.}}

Line style

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''(3.5)'''</Big>|RawN=.|LnSty=1px dashed red}}

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''(3.5)'''</Big>|RawN=.|LnSty=3px dashed #0a7392}}

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=3px solid green}}

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=5px dotted blue}}

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=0px solid green}}

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=5px none green}}

{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=3px double green}}

Line height and indentation (1)

The following equations
:<math>3x+2y-z=1</math>
:<math>2x-2y+4z=-2</math>
:<math>-2x+y-2z=0</math>
form a system of three equations.

The following equations

form a system of three equations.

The following equations
{{NumBlk|:|<math>3x+2y-z=1</math>|1}}
{{NumBlk|:|<math>2x-2y+4z=-2</math>|2}}
{{NumBlk|:|<math>-2x+y-2z=0</math>|3}}
form a system of three equations.

The following equations

form a system of three equations.

The following equations
<div style="line-height: 0;">
{{NumBlk|:|<math>3x+2y-z=1</math>|1}}
{{NumBlk|:|<math>2x-2y+4z=-2</math>|2}}
{{NumBlk|:|<math>-2x+y-2z=0</math>|3}}
</div>
form a system of three equations.

The following equations

form a system of three equations.

The following equations
<div style="line-height: 0;">
{{NumBlk||<math>3x+2y-z=1</math>|1}}
{{NumBlk||<math>2x-2y+4z=-2</math>|2}}
{{NumBlk||<math>-2x+y-2z=0</math>|3}}
</div>
form a system of three equations.

The following equations

form a system of three equations.

The following equations
<div style="line-height: 0; margin-left: 1.6em;">
{{NumBlk||<math>3x+2y-z=1</math>|1}}
{{NumBlk||<math>2x-2y+4z=-2</math>|2}}
{{NumBlk||<math>-2x+y-2z=0</math>|3}}
</div>
form a system of three equations.

The following equations

form a system of three equations.

Line height and indentation (2)

The following equations
:<math>3x+2y-z=1</math>
::<math>2x-2y+4z=-2</math>
:::<math>-2x+y-2z=0</math>
form a system of three equations.

The following equations

form a system of three equations.

The following equations
<div style="line-height: 0; margin-left: 1.6em;">
{{NumBlk||<math>3x+2y-z=1</math>|1}}
<div style="margin-left: 1.6em;">
{{NumBlk||<math>2x-2y+4z=-2</math>|2}}
<div style="margin-left: 1.6em;">
{{NumBlk||<math>-2x+y-2z=0</math>|3}}
</div>
</div>
</div>
form a system of three equations.

The following equations

form a system of three equations.

The following equations
<div style="line-height: 0;">
<div style="margin-left: calc(1.6em * 1);">
{{NumBlk||<math>3x+2y-z=1</math>|1}}
</div>
<div style="margin-left: calc(1.6em * 2);">
{{NumBlk||<math>2x-2y+4z=-2</math>|2}}
</div>
<div style="margin-left: calc(1.6em * 3);">
{{NumBlk||<math>-2x+y-2z=0</math>|3}}
</div>
</div>
form a system of three equations.

The following equations

form a system of three equations.

Unordered list

* <math>3x+2y-z=1</math>
* <math>2x-2y+4z=-2</math>
* <math>-2x+y-2z=0</math>
* {{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}
* {{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}
* {{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}
<ul style="line-height: 0;">
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ul>
<ul style="line-height: 0;">
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ul>

Ordered list

# <math>3x+2y-z=1</math>
# <math>2x-2y+4z=-2</math>
# <math>-2x+y-2z=0</math>
# {{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}
# {{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}
# {{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}
<ol style="line-height: 0;">
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ol>
<ol style="line-height: 0;">
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ol>

Border

{{NumBlk|:|<math>y=ax+b</math>|Eq. 3|Border=1}}

When content of the blocks and block numbers are far apart

Markup
 <div style="line-height:0;">
{{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
{{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
{{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
{{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
{{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
</div>
Renders as
Markup
<div style="line-height:0;">
{{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5|LnSty=0.37ex dotted Gainsboro}}
</div>
Renders as
Markup
<div style="line-height:0;">
{{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2|LnSty=0.37ex none Gainsboro}}
{{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4|LnSty=0.37ex none Gainsboro}}
{{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5|LnSty=0.37ex dotted Gainsboro}}
</div>
Renders as

Positioning relative to surrounding images

Numbered blocks should be able to be placed around images that take up space on the left or right side of the screen. To ensure numbered block has access to the entire line, consider using a {{clear}}-like template.

To illustrate, consider the example:

Markup
[[Image:Bnet_fan2.png|frame|right|Fig.1: Bayesian Network representation of Eq.(6)]]
[[Image:Bnet_fan2.png|frame|left|Fig.1: Bayesian Network representation of Eq.(6)]]
<br><br>A Bayesian network (or a belief network) is a probabilistic graphical model that represents a set of
variables and their probabilistic independencies. For example, a Bayesian network could represent the
probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute
the probabilities of the presence of various diseases.
{{NumBlk|1=:|2=<math>
P(a, b, \lambda) = P(a| \lambda) P(b | \lambda) P(\lambda)\,
</math>,|3='''Eq.(6)'''|RawN=.}}
Renders as
Fig.1: Bayesian Network representation of Eq.(6)
Fig.1: Bayesian Network representation of Eq.(6)



A Bayesian network (or a belief network) is a probabilistic graphical model that represents a set of variables and their probabilistic independencies. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.

If it is desirable for the numbered block to span the entire line, a {{clear}} should be placed before it.

Markup
[[Image:Bnet_fan2.png|frame|right|Fig.1: Bayesian Network representation of Eq.(6)]]
[[Image:Bnet_fan2.png|frame|left|Fig.1: Bayesian Network representation of Eq.(6)]]
<br><br>A Bayesian network (or a belief network) is a probabilistic graphical model that represents a set of
variables and their probabilistic independencies. For example, a Bayesian network could represent the
probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute
the probabilities of the presence of various diseases.
{{clear}}
{{NumBlk|1=:|2=<math>
P(a, b, \lambda) = P(a| \lambda) P(b | \lambda) P(\lambda)\,
</math>,|3='''Eq.(6)'''|RawN=.}}
Renders as
Fig.1: Bayesian Network representation of Eq.(6)
Fig.1: Bayesian Network representation of Eq.(6)



A Bayesian network (or a belief network) is a probabilistic graphical model that represents a set of variables and their probabilistic independencies. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.

Table caveat

Because {{NumBlk}} is implemented as a table, putting {{NumBlk}} within a table yields a nested table. Due to a bug in MediaWiki's handling of nested tables, {{NumBlk}} must be used carefully in this case. In particular, when indentation for the outer table is desired, use explicit <dl><dd>...</dd></dl> tags for indentation instead of a leading colon (:).

For example,

Markup
<dl><dd>
{|
|<math>(f * g)[n]\,</math>&nbsp; &nbsp; &nbsp; 
|{{NumBlk||<math>\stackrel{\mathrm{def}}{=}\sum_{m=-\infty}^{\infty} f[m]\cdot g[n - m]\,</math>|
3=<span style="color:darkred">'''(Eq.1)'''</span>|RawN=.}}
|-
|
|<math>= \sum_{m=-\infty}^{\infty} f[n-m]\cdot g[m].\,</math> &nbsp; &nbsp; &nbsp; ([[Convolution#Commutativity|commutativity]])
|}
</dd></dl>
Renders as
     
      (commutativity)

which shows how the outer <dl><dd>...</dd></dl> tags give the same indentation as a single colon (:) preceding the table should.

For another example,

Markup
<dl><dd>
<dl><dd>
{|
|-
|The first parameter for indentation still works when used inside table.
{{NumBlk|::::|<math>ax^2+bx+c=0</math>|Level 4}}
{{NumBlk|:::|<math>ax^2+bx+c=0</math>|Level 3}}
{{NumBlk|::|<math>ax^2+bx+c=0</math>|Level 2}}
{{NumBlk|:|<math>ax^2+bx+c=0</math>|Level 1}}
{{NumBlk||<math>ax^2+bx+c=0</math>|Level 0}}
|-
|}
</dd></dl>
</dd></dl>
Renders as
The first parameter for indentation still works when used inside table.

which uses two sets of explicit tags to give the same indentation as two colons (::).