Solar eclipse of September 21, 1941
Solar eclipse of September 21, 1941 | |
---|---|
Type of eclipse | |
Nature | Total |
Gamma | 0.4649 |
Magnitude | 1.0379 |
Maximum eclipse | |
Duration | 202 s (3 min 22 s) |
Coordinates | 27°18′N 119°06′E / 27.3°N 119.1°E |
Max. width of band | 143 km (89 mi) |
Times (UTC) | |
Greatest eclipse | 4:34:03 |
References | |
Saros | 143 (19 of 72) |
Catalog # (SE5000) | 9378 |
A total solar eclipse occurred on Sunday, September 21, 1941. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality crossed the Soviet Union (today's Russia, Kazakhstan and Kyrgyzstan), China, Taiwan, Okinawa Prefecture and South Seas Mandate (the parts now belonging to Northern Mariana and Marshall Islands) in Japan, and ended in the Pacific Ocean.
Observations
China
The Chinese Solar Eclipse Observation Committee sent two teams - one led by Zhang Yuzhe and Gao Lu to the Taiyue Temple in Lintao County, Gansu[6][7], and the other to Chong'an County (now Wuyishan City), Fujian[8]. The Lintao team started from Kunming, where a number of universities and institutes of higher education were evacuated during the war, on June 30, 1941, and arrived in Lintao on August 13. They traveled by car for a total of 3,200 kilometres and made science popularization speeches along the way[6].
China was under the rule of the Republic of China and the eclipse occurred during the Second Sino-Japanese War. An artillery regiment was stationed near Lintao, and 20 fighter jets were stationed at Lanzhou Airport ready to intercept Japanese planes. The foggy weather in Lintao suddenly cleared up during the eclipse, making the observation successful. The solar chromosphere spectrum, a movie of the process of the eclipse and three corona images were taken. The brightness of the corona was measured to be 0.37 times that of the full moon. In Chong'an, the cloudy weather resulted in poor results of astronomical observations, but data of the change in Earth's magnetic field during the total phase was still measured[9][8].
In November 1934, astronomer Gao Lu organized the Chinese Solar Eclipse Observation Committee to prepare for observations of the solar eclipse of June 19, 1936 and this eclipse in 1941[9][6]. Due to the Soviet-German War and the Second Sino-Japanese War, European and American astronomers did not make field observations in the Soviet Union and China[10].
Japan
Several universities in Japan made observations in Ishigaki Island in Okinawa, Pengjia Islet in Taiwan under Japanese rule, and Chinese sites including Dongyin Island in Fujian, Nanchang in Jiangxi, Heshengqiao in Xianning, Hubei, Yanzhou in Jiayu, Hubei, and Hankou (now in Wuhan). Among them, Ishigaki Island had the sunniest weather and the most successful observation results. Results were poor due to thick clouds in Heshengqiao and Yanzhou where teams of Tokyo Imperial University, Kyoto Imperial University, and Tohoku Imperial University went[11].
Soviet Union
The Academy of Sciences of the Soviet Union began preparations in 1939. It was originally planned to involve 28 agencies, but due to the outbreak of World War II, only 7 observation teams were formed. The observation sites were Almaty and Kyzylorda in present-day Kazakhstan. The weather was good in Almaty with many observation results, while there were some clouds in Kyzylorda but several image were still taken[12]. European and American astronomers did not went to the Soviet Union due to the war[10].
Related eclipses
Solar eclipses of 1939–1942
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[13]
The partial solar eclipse on August 12, 1942 occurs in the next lunar year eclipse set.
Solar eclipse series sets from 1939 to 1942 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
118 | April 19, 1939 Annular |
0.9388 | 123 | October 12, 1939 Total |
−0.9737 | |
128 | April 7, 1940 Annular |
0.219 | 133 | October 1, 1940 Total |
−0.2573 | |
138 | March 27, 1941 Annular |
−0.5025 | 143 | September 21, 1941 Total |
0.4649 | |
148 | March 16, 1942 Partial |
−1.1908 | 153 | September 10, 1942 Partial |
1.2571 |
Saros 143
This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 7, 1617. It contains total eclipses from June 24, 1797 through October 24, 1995; hybrid eclipses from November 3, 2013 through December 6, 2067; and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2897. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 16 at 3 minutes, 50 seconds on August 19, 1887, and the longest duration of annularity will be produced by member 51 at 4 minutes, 54 seconds on September 6, 2518. All eclipses in this series occur at the Moon’s ascending node of orbit.[14]
Series members 12–33 occur between 1801 and 2200: | ||
---|---|---|
12 | 13 | 14 |
July 6, 1815 |
July 17, 1833 |
July 28, 1851 |
15 | 16 | 17 |
August 7, 1869 |
August 19, 1887 |
August 30, 1905 |
18 | 19 | 20 |
September 10, 1923 |
September 21, 1941 |
October 2, 1959 |
21 | 22 | 23 |
October 12, 1977 |
October 24, 1995 |
November 3, 2013 |
24 | 25 | 26 |
November 14, 2031 |
November 25, 2049 |
December 6, 2067 |
27 | 28 | 29 |
December 16, 2085 |
December 29, 2103 |
January 8, 2122 |
30 | 31 | 32 |
January 20, 2140 |
January 30, 2158 |
February 10, 2176 |
33 | ||
February 21, 2194 |
References
- ^ "Eclipse-Awed Chinese Beat Gongs, Shoot Fireworks". The Atlanta Constitution. Atlanta, Georgia. 1941-09-22. p. 1. Retrieved 2023-10-17 – via Newspapers.com.
- ^ "There is a total eclipse to-day, but We Shan't See One Till 1999". Sunday Dispatch. London, England. 1941-09-21. p. 4. Retrieved 2023-10-17 – via Newspapers.com.
- ^ "Chinese Will Observe Total Solar Eclipse". The Atlanta Constitution. Atlanta, Georgia. 1941-09-21. p. 15. Retrieved 2023-10-17 – via Newspapers.com.
- ^ "CHINESE SCIENTISTS TO SEE FIRST FULL ECLIPSE SINCE 1856". St. Louis Post-Dispatch. St. Louis, Missouri. 1941-09-21. p. 38. Retrieved 2023-10-17 – via Newspapers.com.
- ^ "Chinese Savants To Study Eclipse". Tulsa World. Tulsa, Oklahoma. 1941-09-21. p. 4. Retrieved 2023-10-17 – via Newspapers.com.
- ^ a b c "观赏金边日环食,回望我国抗战期间的日食长征". 游系人生 (in Chinese). 19 September 2020. Archived from the original on 15 December 2023.
- ^ "武汉68年前沦陷时的日食观测经历生死考验". Chutian Metropolis Daily (in Chinese). 21 July 2009.
- ^ a b "20世纪中国日全食观测小史" (in Chinese). Archived from the original on 17 October 2020.
- ^ a b Jiang Xiaoyuan, Wu Yan (January 2004). 紫金山天文台史 (PDF) (in Chinese). 河北大學出版社. ISBN 7-81028-974-8.
- ^ a b Sadler, D. H. (1941). "The Total Solar Eclipse of September 21, 1941" (PDF). Nature. 148 (3750): 308.
- ^ 小穴純. "中支日食觀測談" (in Japanese). p. 107-110.
- ^ "Полное солнечное затмение 21 сентября 1941 года" (in Russian). Archived from the original on 8 August 2009.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 143". eclipse.gsfc.nasa.gov.