Jump to content

Solar eclipse of December 4, 2002

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Earth Resident (talk | contribs) at 05:53, 12 May 2024 (Add information of observations). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Solar eclipse of December 4, 2002
The diamond ring effect at the end of totality, taken near Woomera, South Australia
Map
Type of eclipse
NatureTotal
Gamma−0.302
Magnitude1.0244
Maximum eclipse
Duration124 s (2 min 4 s)
Coordinates39°30′S 59°36′E / 39.5°S 59.6°E / -39.5; 59.6
Max. width of band87 km (54 mi)
Times (UTC)
Greatest eclipse7:32:16
References
Saros142 (22 of 72)
Catalog # (SE5000)9514

A total solar eclipse took place on December 4, 2002,[1][2] with a magnitude of 1.0244. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible from a narrow corridor in southern Africa, the Indian Ocean and southern Australia. A partial eclipse was seen from the much broader path of the Moon's penumbra, including most of Africa and Australia. During the sunset after the eclipse many observers in Australia saw numerous and unusual forms of a green flash.[3]

In some parts of Angola, it was the second total eclipse of the Sun within 18 months, following the Solar eclipse of June 21, 2001.

Observations

The Chinese Academy of Sciences sent a team to Australia, to study the gravity anomalies[4] first recorded by Indian scientists during the total solar eclipse of October 24, 1995[5]. The Chinese Academy of Sciences also studied it during previous total solar eclipses of March 9, 1997 in Mohe County and June 21, 2001 in Zambia. With continuous observation for more than 10 years after that, China obtained the first observational evidence that the gravity field propagates at the speed of light[6].

Images

Eclipses of 2002

Tzolkinex

Half-Saros

Tritos

Solar Saros 142

Inex

Solar eclipses 2000–2003

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[7]

The partial solar eclipses on February 5, 2000 and July 31, 2000 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2000 to 2003
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117 July 1, 2000

Partial
−1.28214 122

Partial projection in Minneapolis, MN, USA
December 25, 2000

Partial
1.13669
127

Totality in Lusaka, Zambia
June 21, 2001

Total
−0.57013 132

Partial in Minneapolis, MN, USA
December 14, 2001

Annular
0.40885
137

Partial in Los Angeles, CA, USA
June 10, 2002

Annular
0.19933 142

Totality in Woomera, South Australia
December 4, 2002

Total
−0.30204
147

Annularity in Culloden, Scotland
May 31, 2003

Annular
0.99598 152
November 23, 2003

Total
−0.96381

Saros 142

This eclipse is a part of Saros series 142, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on April 17, 1624. It contains a hybrid eclipse on July 14, 1768, and total eclipses from July 25, 1786 through October 29, 2543. There are no annular eclipses in this set. The series ends at member 72 as a partial eclipse on June 5, 2904. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 38 at 6 minutes, 34 seconds on May 28, 2291. All eclipses in this series occur at the Moon’s descending node of orbit.[8]

Series members 11–32 occur between 1801 and 2200:
11 12 13

August 5, 1804

August 16, 1822

August 27, 1840
14 15 16

September 7, 1858

September 17, 1876

September 29, 1894
17 18 19

October 10, 1912

October 21, 1930

November 1, 1948
20 21 22

November 12, 1966

November 22, 1984

December 4, 2002
23 24 25

December 14, 2020

December 26, 2038

January 5, 2057
26 27 28

January 16, 2075

January 27, 2093

February 8, 2111
29 30 31

February 18, 2129

March 2, 2147

March 12, 2165
32

March 23, 2183

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between July 11, 1953 and July 11, 2029
July 10–11 April 29–30 February 15–16 December 4 September 21–23
116 118 120 122 124

July 11, 1953

April 30, 1957

February 15, 1961

December 4, 1964

September 22, 1968
126 128 130 132 134

July 10, 1972

April 29, 1976

February 16, 1980

December 4, 1983

September 23, 1987
136 138 140 142 144

July 11, 1991

April 29, 1995

February 16, 1999

December 4, 2002

September 22, 2006
146 148 150 152 154

July 11, 2010

April 29, 2014

February 15, 2018

December 4, 2021

September 21, 2025
156

July 11, 2029

Notes

  1. ^ "Total solar eclipse 'magnificent'". News-Press. 2002-12-05. p. 3. Retrieved 2023-10-25 – via Newspapers.com.
  2. ^ "Solar eclipse bedazzles southern Africa crowds". News and Record. 2002-12-05. p. 9. Retrieved 2023-10-25 – via Newspapers.com.
  3. ^ Maunder, Michael (2007). Lights in the Sky: Identifying and Understanding Astronomical and Meteorological Phenomena. Springer. p. 116. ISBN 978-1846287619. Retrieved 28 September 2013.
  4. ^ Xue Hui (5 December 2002). "今澳洲可观测到日全食 中国科学家捕捉"微重力"". Beijing Morning Post (in Chinese). Xinhua News Agency. Archived from the original on 25 December 2002.
  5. ^ Chai Shikuan, Xiong Sihao (25 June 2001). "中科院日全食观测队获得高质量观测数据" (in Chinese). Xinhua News Agency. Archived from the original on 2003-11-03.
  6. ^ Sun Zifa (26 December 2012). "中国科学家全球首获引力场以光速传播的观测证据" (in Chinese). China News Service. Archived from the original on 24 September 2015.
  7. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  8. ^ "NASA - Catalog of Solar Eclipses of Saros 142". eclipse.gsfc.nasa.gov.

References

Photos: