Jump to content

Portal:Nuclear technology

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by K6ka (talk | contribs) at 18:33, 1 June 2024 (Reverted edits by 2603:6080:6901:7CC5:8435:BC4F:169D:4CB (talk) (HG) (3.4.12)). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

The Nuclear Technology Portal

Introduction

This symbol of radioactivity is internationally recognized.

General images - load new batch

The following are images from various nuclear technology-related articles on Wikipedia.

Selected article - show another

The MAUD Committee was a British scientific working group formed during the Second World War. It was established to perform the research required to determine if an atomic bomb was feasible. The name MAUD came from a strange line in a telegram from Danish physicist Niels Bohr referring to his housekeeper, Maud Ray.

The MAUD Committee was founded in response to the Frisch–Peierls memorandum, which was written in March 1940 by Rudolf Peierls and Otto Frisch, two physicists who were refugees from Nazi Germany working at the University of Birmingham under the direction of Mark Oliphant. The memorandum argued that a small sphere of pure uranium-235 could have the explosive power of thousands of tons of TNT.

The chairman of the MAUD Committee was George Thomson. Research was split among four different universities: the University of Birmingham, University of Liverpool, University of Cambridge and the University of Oxford, each having a separate programme director. Various means of uranium enrichment were examined, as was nuclear reactor design, the properties of uranium-235, the use of the then-hypothetical element plutonium, and theoretical aspects of nuclear weapon design.

After fifteen months of work, the research culminated in two reports, "Use of Uranium for a Bomb" and "Use of Uranium as a Source of Power", known collectively as the MAUD Report. The report discussed the feasibility and necessity of an atomic bomb for the war effort. In response, the British created a nuclear weapons project, code named Tube Alloys. The MAUD Report was made available to the United States, where it energised the American effort, which eventually became the Manhattan Project. The report was also revealed to the Soviet Union by its atomic spies, and helped start the Soviet atomic bomb project. (Full article...)

Selected picture - show another

Credit: Ed Westcott
K-25 at Oak Ridge. Welding in Prefabrication Shop.

Did you know?

Things you can do


Selected biography - show another

Harold Clayton Urey ForMemRS (/ˈjʊəri/ YOOR-ee; April 29, 1893 – January 5, 1981) was an American physical chemist whose pioneering work on isotopes earned him the Nobel Prize in Chemistry in 1934 for the discovery of deuterium. He played a significant role in the development of the atom bomb, as well as contributing to theories on the development of organic life from non-living matter.

Born in Walkerton, Indiana, Urey studied thermodynamics under Gilbert N. Lewis at the University of California, Berkeley. After he received his PhD in 1923, he was awarded a fellowship by the American-Scandinavian Foundation to study at the Niels Bohr Institute in Copenhagen. He was a research associate at Johns Hopkins University before becoming an associate professor of chemistry at Columbia University. In 1931, he began work with the separation of isotopes that resulted in the discovery of deuterium.

During World War II, Urey turned his knowledge of isotope separation to the problem of uranium enrichment. He headed the group located at Columbia University that developed isotope separation using gaseous diffusion. The method was successfully developed, becoming the sole method used in the early post-war period. After the war, Urey became professor of chemistry at the Institute for Nuclear Studies, and later Ryerson professor of chemistry at the University of Chicago.

Urey speculated that the early terrestrial atmosphere was composed of ammonia, methane, and hydrogen. One of his Chicago graduate students was Stanley L. Miller, who showed in the Miller–Urey experiment that, if such a mixture were exposed to electric sparks and water, it can interact to produce amino acids, commonly considered the building blocks of life. Work with isotopes of oxygen led to pioneering the new field of paleoclimatic research. In 1958, he accepted a post as a professor at large at the new University of California, San Diego (UCSD), where he helped create the science faculty. He was one of the founding members of UCSD's school of chemistry, which was created in 1960. He became increasingly interested in space science, and when Apollo 11 returned Moon rock samples from the Moon, Urey examined them at the Lunar Receiving Laboratory. Lunar astronaut Harrison Schmitt said that Urey approached him as a volunteer for a one-way mission to the Moon, stating "I will go, and I don't care if I don't come back." (Full article...)

Nuclear technology news


10 December 2024 – Belarus–Russia relations, Nuclear risk during the Russian invasion of Ukraine
Belarusian President Alexander Lukashenko confirms the presence of nuclear weapons in his country, including Russia's Oreshnik missile system. (AP)
6 December 2024 – Belarus–Russia relations, Nuclear risk during the Russian invasion of Ukraine
Russian President Vladimir Putin and Belarusian President Alexander Lukashenko sign an agreement in Minsk, Belarus, offering security guarantees to Belarus including nuclear security and the possible use of Russian nuclear weapons in order to repel aggressions. (AP)
1 December 2024 – Ukraine–United States relations
U.S. National Security Advisor Jake Sullivan says that the United States will not return the nuclear weapons that they dismantled to Ukraine. (Reuters)
19 November 2024 – Russian invasion of Ukraine
Nuclear risk during the Russian invasion of Ukraine, Russia and weapons of mass destruction

Subcategories

Category puzzle
Category puzzle
Select [►] to view subcategories

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Discover Wikipedia using portals