Jump to content

Johnson solid

Page semi-protected
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Dedhert.Jr (talk | contribs) at 06:32, 6 June 2024 (source for near-miss, but not the previous). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. It is also Johnson–Zalgaller solid, was named after two mathematicians Norman Johnson and Victor Zalgaller.

Description

The following are three examples of solids. The first solid, elongated square gyrobicupola, is Johnson solid because it has the convexity property. The second solid, stella octangula is not Johnson solid because it is not convex, meaning whenever two points are inside of it, the line connecting always be outside. The last solid is not a Johnson solid because it is not strictly convex, meaning every face is planar or the dihedral angles of two adjacent face has 180°.

A Johnson solid is a convex polyhedron in which the faces of each are regular polygon. Although there is no restriction that any given regular polygon cannot be a face of a Johnson solid, some authors required that Johnson solids are not uniform. This means that Johnson solid are not a Platonic solid, Archimedean solid, prism, or antiprism.[1][2] Equivalently, a Johnson solid is defined as the strictly convex polyhedron, meaning that every face is not coplanar.[citation needed] A convex polyhedron in which all faces are close enough to become regular but some of them are not precisely regular is known as near-miss Johnson solid.

The Johnson solid, sometimes known as Johnson–Zalgaller solid, was named after two mathematicians Norman Johnson and Victor Zalgaller.[3] Johnson (1966) published a list including 92 Johnson solids—excluding the five Platonic solids, the thirteen Archimedean solids, the infinitely many uniform prisms, and the infinitely many uniform antiprisms—and gave them their names and numbers. He did not prove that there were only 92, but he did conjecture that there were no others.[4] Zalgaller (1969) proved that Johnson's list was complete.[5]

Some of the Johnson solids do have Rupert property, meaning they do have the polyhedron of the same or larger size that may pass through a hole inside of them. However, the other five Johnson solids do not have this property: gyrate rhombicosidodecahedron, parabigyrate rhombicosidodecahedron, metabigyrate rhombicosidodecahedron, trigyrate rhombicosidodecahedron, and paragyrate diminished rhombicosidodecahedron.[6] From all of the Johnson solids, the elongated square gyrobicupola (also called the pseudorhombicuboctahedron),[7] is unique in being locally vertex-uniform: there are four faces at each vertex, and their arrangement is always the same: three squares and one triangle. However, it is not vertex-transitive, as it has different isometry at different vertices, making it a Johnson solid rather than an Archimedean solid.

Naming and enumeration

An example is triaugmented triangular prism. Here, it is constructed from triangular prism by joining three equilateral square pyramids into each of its squares (tri-). The process of this construction known as "augmentation", making its first name is "triaugmented".

The naming of Johnson solids follows a flexible and precise descriptive formula, with many solids can therefore be named in different ways without compromising their accuracy as a description. Most Johnson solids can be constructed from the first few (pyramids, cupolae, and rotundas), together with the Platonic and Archimedean solids, prisms, and antiprisms; the center of a particular solid's name will reflect these ingredients. From there, a series of prefixes are attached to the word to indicate additions, rotations, and transformations:[8]

  • Bi- indicates that two copies of the solid are joined base-to-base. For cupolae and rotundas, the solids can be joined so that either like faces (ortho-) or unlike faces (gyro-) meet. Using this nomenclature, a pentagonal bipyramid is a solid constructed by attaching two bases of pentagonal pyramids. Triangular orthobicupola is constructed by two triangular cupolas along their bases.
  • Elongated indicates a prism is joined to the base of the solid, or between the bases; gyroelongated indicates an antiprism. Augmented indicates another polyhedron, namely a pyramid or cupola, is joined to one or more faces of the solid in question.
  • Diminished indicates a pyramid or cupola is removed from one or more faces of the solid in question.
  • Gyrate indicates a cupola mounted on or featured in the solid in question is rotated such that different edges match up, as in the difference between ortho- and gyrobicupolae.

The last three operations—augmentation, diminution, and gyration—can be performed multiple times for certain large solids. Bi- & Tri- indicate a double and triple operation respectively. For example, a bigyrate solid has two rotated cupolae, and a tridiminished solid has three removed pyramids or cupolae. In certain large solids, a distinction is made between solids where altered faces are parallel and solids where altered faces are oblique. Para- indicates the former, that the solid in question has altered parallel faces, and meta- the latter, altered oblique faces. For example, a parabiaugmented solid has had two parallel faces augmented, and a metabigyrate solid has had 2 oblique faces gyrated.[8]

The last few Johnson solids have names based on certain polygon complexes from which they are assembled. These names are defined by Johnson with the following nomenclature:[8]

  • A lune is a complex of two triangles attached to opposite sides of a square.
  • Spheno- indicates a wedgelike complex formed by two adjacent lunes. Dispheno- indicates two such complexes.
  • Hebespheno- indicates a blunt complex of two lunes separated by a third lune.
  • Corona is a crownlike complex of eight triangles.
  • Megacorona is a larger crownlike complex of 12 triangles.
  • The suffix -cingulum indicates a belt of 12 triangles.

The following is the list of Johnson solids, with the enumeration followed according to the list of Johnson (1966):

  1. Equilateral square pyramid
  2. Pentagonal pyramid
  3. Triangular cupola
  4. Square cupola
  5. Pentagonal cupola
  6. Pentagonal rotunda
  7. Elongated triangular pyramid
  8. Elongated square pyramid
  9. Elongated pentagonal pyramid
  10. Gyroelongated square pyramid
  11. Gyroelongated pentagonal pyramid
  12. Triangular bipyramid
  13. Pentagonal bipyramid
  14. Elongated triangular bipyramid
  15. Elongated square bipyramid
  16. Elongated pentagonal bipyramid
  17. Gyroelongated square bipyramid
  18. Elongated triangular cupola
  19. Elongated square cupola
  20. Elongated pentagonal cupola
  21. Elongated pentagonal rotunda
  22. Gyroelongated triangular cupola
  23. Gyroelongated square cupola
  24. Gyroelongated pentagonal cupola
  25. Gyroelongated pentagonal rotunda
  26. Gyrobifastigium
  27. Triangular orthobicupola
  28. Square orthobicupola
  29. Square gyrobicupola
  30. Pentagonal gyrobicupola
  31. Pentagonal orthocupolarotunda
  32. Pentagonal gyrocupolarotunda
  33. Pentagonal orthobirotunda
  34. Elongated triangular orthobicupola
  35. Elongated triangular gyrobicupola
  36. Elongated square gyrobicupola
  37. Elongated pentagonal orthobicupola
  38. Elongated pentagonal gyrobicupola
  39. Elongated pentagonal orthocupolarotunda
  40. Elongated pentagonal gyrocupolarotunda
  41. Elongated pentagonal orthobirotunda
  42. Elongated pentagonal gyrobirotunda
  43. Gyroelongated triangular bicupola
  44. Gyroelongated square bicupola
  45. Gyroelongated pentagonal bicupola
  46. Gyroelongated pentagonal cupolarotunda
  47. Gyroelongated pentagonal birotunda
  48. Augmented triangular prism
  49. Biaugmented triangular prism
  50. Triaugmented triangular prism
  51. Augmented pentagonal prism
  52. Biaugmented pentagonal prism
  53. Augmented hexagonal prism
  54. Parabiaugmented hexagonal prism
  55. Metabiaugmented hexagonal prism
  56. Triaugmented hexagonal prism
  57. Augmented dodecahedron
  58. Parabiaugmented dodecahedron
  59. Metabiaugmented dodecahedron
  60. Triaugmented dodecahedron
  61. Metabidiminished icosahedron
  62. Tridiminished icosahedron
  63. Augmented tridiminished icosahedron
  64. Augmented truncated tetrahedron
  65. Augmented truncated cube
  66. Biaugmented truncated cube
  67. Augmented truncated dodecahedron
  68. Parabiaugmented truncated dodecahedron
  69. Metabiaugmented truncated dodecahedron
  70. Triaugmented truncated dodecahedron
  71. Gyrate rhombicosidodecahedron
  72. Parabigyrate rhombicosidodecahedron
  73. Metabigyrate rhombicosidodecahedron
  74. Trigyrate rhombicosidodecahedron
  75. Diminished rhombicosidodecahedron
  76. Paragyrate diminished rhombicosidodecahedron
  77. Metagyrate diminished rhombicosidodecahedron
  78. Bigyrate diminished rhombicosidodecahedron
  79. Parabidiminished rhombicosidodecahedron
  80. Metabidiminished rhombicosidodecahedron
  81. Gyrate bidiminished rhombicosidodecahedron
  82. Tridiminished rhombicosidodecahedron
  83. Snub disphenoid
  84. Snub square antiprism
  85. Sphenocorona
  86. Augmented sphenocorona
  87. Sphenomegacorona
  88. Hebesphenomegacorona
  89. Disphenocingulum
  90. Bilunabirotunda
  91. Triangular hebesphenorotunda

References

  1. ^ Cite error: The named reference todesco was invoked but never defined (see the help page).
  2. ^ Williams, Kim; Monteleone, Cosino (2021). Daniele Barbaro’s Perspective of 1568. Springer. p. 23. doi:10.1007/978-3-030-76687-0. ISBN 978-3-030-76687-0.
  3. ^ Uehara, Ryuhei (2020). Introduction to Computational Origami: The World of New Computational Geometry. Springer. doi:10.1007/978-981-15-4470-5. ISBN 978-981-15-4470-5.
  4. ^ Johnson, Norman (1966). "Convex Solids with Regular Faces". Canadian Journal of Mathematics. 18: 169–200. doi:10.4153/CJM-1966-021-8.
  5. ^ Zalgaller, Victor A. (1969). Convex Polyhedra with Regular Faces. Consultants Bureau.
  6. ^ Fredriksson, Albin (2024). "Optimizing for the Rupert property". The American Mathematical Monthly. 131 (3): 255–261. arXiv:2210.00601. doi:10.1080/00029890.2023.2285200.
  7. ^ GWH. "Pseudo Rhombicuboctahedra". www.georgehart.com. Retrieved 17 April 2018.
  8. ^ a b c Berman, Martin (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR 0290245.