Jump to content

Al-Salam–Carlitz polynomials

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by Citation bot (talk | contribs) at 19:45, 11 August 2024 (Altered author2-link. Added issue. | Use this bot. Report bugs. | Suggested by Abductive | Category:Special functions | #UCB_Category 62/143). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, Al-Salam–Carlitz polynomials U(a)
n
(x;q) and V(a)
n
(x;q) are two families of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Waleed Al-Salam and Leonard Carlitz (1965). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14.24, 14.25) give a detailed list of their properties.

Definition

[edit]

The Al-Salam–Carlitz polynomials are given in terms of basic hypergeometric functions by

References

[edit]
  • Al-Salam, W. A.; Carlitz, L. (1965), "Some orthogonal q-polynomials", Mathematische Nachrichten, 30 (1–2): 47–61, doi:10.1002/mana.19650300105, ISSN 0025-584X, MR 0197804
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096

Further reading

[edit]
  • Wang, M. (2009). -integral representation of the Al-Salam–Carlitz polynomials. Applied Mathematics Letters, 22(6), 943-945.
  • Askey, R., & Suslov, S. K. (1993). The -harmonic oscillator and the Al-Salam and Carlitz polynomials. Letters in Mathematical Physics, 29(2), 123-132.
  • Chen, W. Y., Saad, H. L., & Sun, L. H. (2010). An operator approach to the Al-Salam–Carlitz polynomials. Journal of Mathematical Physics, 51(4).
  • Kim, D. (1997). On combinatorics of Al-Salam Carlitz polynomials. European Journal of Combinatorics, 18(3), 295-302.
  • Andrews, G. E. (2000). Schur's theorem, partitions with odd parts and the Al-Salam-Carlitz polynomials. Contemporary Mathematics, 254, 45-56.
  • Baker, T. H., & Forrester, P. J. (2000). Multivariable Al–Salam & Carlitz Polynomials Associated with the Type A –Dunkl Kernel. Mathematische Nachrichten, 212(1), 5-35.