Jump to content

Hoeffding's lemma

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Epistemenical (talk | contribs) at 22:38, 7 September 2024 (reference subgaussians + other proof techniques). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In probability theory, Hoeffding's lemma is an inequality that bounds the moment-generating function of any bounded random variable,[1] implying that such variables are subgaussian. It is named after the FinnishAmerican mathematical statistician Wassily Hoeffding.

The proof of Hoeffding's lemma uses Taylor's theorem and Jensen's inequality. Hoeffding's lemma is itself used in the proof of Hoeffding's inequality as well as the generalization McDiarmid's inequality.

Statement of the lemma

Let X be any real-valued random variable such that almost surely, i.e. with probability one. Then, for all ,

or equivalently,

Proof

The following proof is direct but somewhat ad-hoc. Another proof uses exponential tilting[2]: Lemma 2.2 ; proofs with a slightly worse constant are also available using symmetrization.[3]

Without loss of generality, by replacing by , we can assume , so that .

Since is a convex function of , we have that for all ,

So,

where . By computing derivatives, we find

and .

From the AMGM inequality we thus see that for all , and thus, from Taylor's theorem, there is some such that

Thus, .

See also

Notes

  1. ^ Pascal Massart (26 April 2007). Concentration Inequalities and Model Selection: Ecole d'Eté de Probabilités de Saint-Flour XXXIII - 2003. Springer. p. 21. ISBN 978-3-540-48503-2.
  2. ^ Boucheron, Stéphane; Lugosi, Gábor; Massart, Pascal (2013). Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press.
  3. ^ Romaní, Marc (1 May 2021). "A short proof of Hoeffding's lemma". Retrieved 7 September 2024.