From Wikipedia, the free encyclopedia
Finished writing a draft article? Are you ready to request review of it by an experienced editor for possible inclusion in Wikipedia? Submit your draft for review!
10
506
−
10
253
−
1
{\displaystyle 10^{506}-10^{253}-1}
Consonant chart for American English
Hubble constant
Cursed units!
H
0
=
70
_
km/s/Mpc
=
70
_
(
1
×
10
3
m
)
/
s
/
(
1
×
10
6
pc
)
=
70
_
(
1
×
10
3
m
)
/
s
/
(
1
×
10
6
pc
)
648000
π
AU
1
pc
=
70
_
(
1
×
10
3
m
)
/
s
/
6.48
×
10
11
π
AU
=
70
_
(
1
×
10
3
m
)
/
s
/
(
6.48
×
10
11
π
AU
)
(
149
597
870
700
m
1
AU
)
=
7.0
_
×
10
4
m
/
s
/
9.69394202136
×
10
22
π
m
=
7.0
_
×
10
4
m
1
s
⋅
π
9.69394202136
×
10
22
m
=
7.0
_
×
10
4
m
1
s
⋅
π
9.69394202136
×
10
22
m
=
7.0
_
π
9.69394202136
s
×
10
4
10
22
=
7.0
_
π
9.69394202136
s
×
1
10
18
=
7.0
_
π
9.69394202136
×
10
18
s
≈
2.2
_
685455
×
10
−
18
Hz
{\displaystyle {\begin{aligned}H_{0}&={\underline {70}}{\text{ km/s/Mpc}}\\&={\underline {70}}(1\times 10^{3}{\text{ m}})/{\text{s}}/(1\times 10^{6}{\text{ pc}})\\&={\underline {70}}(1\times 10^{3}{\text{ m}})/{\text{s}}/{\frac {(1\times 10^{6}{\cancel {\text{ pc}}}){\frac {648000}{\pi }}{\text{ AU}}}{1{\cancel {\text{ pc}}}}}\\&={\underline {70}}(1\times 10^{3}{\text{ m}})/{\text{s}}/{\frac {6.48\times 10^{11}}{\pi }}{\text{ AU}}\\&={\underline {70}}(1\times 10^{3}{\text{ m}})/{\text{s}}/{\Bigl (}{\frac {6.48\times 10^{11}}{\pi }}{\cancel {\text{ AU}}}{\Bigr )}{\Bigl (}{\frac {149\,597\,870\,700{\text{ m}}}{1{\cancel {\text{ AU}}}}}{\Bigr )}\\&={\underline {7.0}}\times 10^{4}{\text{ m}}/{\text{s}}/{\frac {9.69394202136\times 10^{22}}{\pi }}{\text{ m}}\\&={\frac {{\underline {7.0}}\times 10^{4}{\text{ m}}}{1{\text{ s}}}}\cdot {\frac {\pi }{9.69394202136\times 10^{22}{\text{ m}}}}\\&={\frac {{\underline {7.0}}\times 10^{4}{\cancel {\text{ m}}}}{1{\text{ s}}}}\cdot {\frac {\pi }{9.69394202136\times 10^{22}{\cancel {\text{ m}}}}}\\&={\frac {{\underline {7.0}}\pi }{9.69394202136{\text{ s}}}}\times {\frac {10^{4}}{10^{22}}}\\&={\frac {{\underline {7.0}}\pi }{9.69394202136{\text{ s}}}}\times {1 \over {10^{18}}}\\&={\frac {{\underline {7.0}}\pi }{9.69394202136\times 10^{18}{\text{ s}}}}\\&\approx {\underline {2.2}}685455\times 10^{-18}{\text{ Hz}}\\\end{aligned}}}
H
0
=
2.3
aHz
{\displaystyle H_{0}=2.3{\text{ aHz}}}