Jump to content

Vector calculus

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by ChristopherWillis (talk | contribs) at 02:58, 6 December 2007 (rv). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Vector calculus (also called vector analysis) is a field of mathematics concerned with multivariate real analysis of vectors in a metric space with two or more dimensions (some results can only be applied to three dimensions[1]). It consists of a suite of formulae and problem solving techniques very useful for engineering and physics. Vector analysis has its origin in quaternion analysis, and was formulated by the American engineer and scientist J. Willard Gibbs and the British engineer Oliver Heaviside.

Vector calculus is concerned with scalar fields, which associate a scalar to every point in space, and vector fields, which associate a vector to every point in space. For example, the temperature of a swimming pool is a scalar field: to each point we associate a scalar value of temperature. The water flow in the same pool is a vector field: to each point we associate a velocity vector.

Vector calculus operations are functions between scalar and vector fields. They are typically expressed in terms of the del operator (). Four operations are important in vector calculus:

Operation Notation Description Domain/Range
Gradient Measures the rate and direction of change in a scalar field. Maps scalar fields to vector fields.
Curl Measures a vector field's tendency to rotate about a point. Maps vector fields to vector fields.
Divergence Measures the magnitude of a vector field's source or sink at a given point. Maps vector fields to scalar fields.
Laplacian A composition of the divergence and gradient operations. Maps scalar fields to scalar fields.

A quantity called the Jacobian is useful for studying functions when both the domain and range of the function are multivariable, such as a change of variables during integration.

Likewise, there are several important theorems related to these operators which generalize the fundamental theorem of calculus to higher dimensions:

Theorem Statement Description
Gradient theorem The line integral through a gradient (vector) field equals the difference in its scalar field at the endpoints of the curve.
Green's theorem The integral of the scalar curl of a vector field over some region in the plane equals the line integral of the vector field over the curve bounding the region.
Stokes' theorem The integral of the curl of a vector field over a surface equals the line integral of the vector field over the curve bounding the surface.
Divergence theorem The integral of the divergence of a vector field over some solid equals the integral of the flux through the surface bounding the solid.

The use of vector calculus may require the handedness of the coordinate system to be taken into account (see cross product and handedness for more detail). Most of the analytic results are easily understood, in a more general form, using the machinery of differential geometry, of which vector calculus forms a subset.

See also

Footnotes

  1. ^ All relations that involve a cross product

References

  • Michael J. Crowe (1994). A History of Vector Analysis : The Evolution of the Idea of a Vectorial System. Dover Publications; Reprint edition. ISBN 0-486-67910-1. (Summary)
  • H. M. Schey (2005). Div Grad Curl and all that: An informal text on vector calculus. W. W. Norton & Company. ISBN 0-393-92516-1.
  • Chen-To Tai (1995). A historical study of vector analysis. Technical Report RL 915, Radiation Laboratory, University of Michigan.