Jump to content

Technology

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 24.28.136.233 (talk) at 05:30, 22 May 2008 (Other species: removed unnecessary page number request--not a specific quotation/paraphrase/reference to a specific passage). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

By the mid 20th century humans had achieved a mastery of technology sufficient to leave the surface of the Earth for the first time and explore space.

Technology is a broad concept that deals with the usage and knowledge of tools and crafts, and how it affects the ability to control and adapt to the environment. In human society, it is a consequence of science and engineering, although several technological advances predate the two concepts. Technology is a term with origins in the latin "technologia", "τεχνολογία" — "techne", "τέχνη" ("craft") and "logia", "λογία" ("saying").[1] However, a strict definition is elusive; "technology" can refer to material objects of use to humanity, such as machines, hardware or utensils, but can also encompass broader themes, including systems, methods of organization, and techniques. The term can either be applied generally or to specific areas: examples include "construction technology", "medical technology", or "state-of-the-art technology". Other species have also been observed to have created and used technology, including non-human primates, dolphins, and crows.

People's use of technology began with the conversion of natural resources into simple tools. The prehistorical discovery of the ability to control fire increased the available sources of food and the invention of the wheel helped humans in travelling in and controlling their environment. Recent technological developments, including the printing press, the telephone, and the Internet, have lessened physical barriers to communication and allowed humans to interact on a global scale. However, not all technology has been used for peaceful purposes; the development of weapons of ever-increasing destructive power has progressed throughout history, from clubs to nuclear weapons.

Technology has affected society and its surroundings in a number of ways. In many societies, technology has helped develop more advanced economies (including today's global economy) and has allowed the rise of a leisure class. Many technological processes produce unwanted by-products, known as pollution, and deplete natural resources, to the detriment of the Earth and its environment. Various implementations of technology influence the values of a society and new technology often raises new ethical questions. Examples include the rise of the notion of efficiency in terms of human productivity, a term originally applied only to machines, and the challenge of traditional norms.

Philosophical debates have arisen over the present and future use of technology in society, with disagreements over whether technology improves the human condition or worsens it. Neo-Luddism, anarcho-primitivism, and similar movements criticise the pervasiveness of technology in the modern world, claiming that it harms the environment and alienates people; proponents of ideologies such as transhumanism and techno-progressivism view continued technological progress as beneficial to society and the human condition. Indeed, until recently, it was believed that the development of technology was restricted only to human beings, but recent scientific studies indicate that other primates and certain dolphin communities have developed simple tools and learned to pass their knowledge to other generations.

Definition and usage

The invention of the printing press made it possible for scientists and politicians to communicate their ideas with ease, leading to the Age of Enlightenment; an example of technology as a cultural force.

In general technology is the relationship that society has with its tools and crafts, and to what extent society can control its environment. The Merriam-Webster dictionary offers a definition of the term: "the practical application of knowledge especially in a particular area" and "a capability given by the practical application of knowledge".[1] Ursula Franklin, in her 1989 "Real World of Technology" lecture, gave another definition of the concept; it is "practice, the way we do things around here".[2] The term is often used to imply a specific field of technology, or to refer to high technology, rather than technology as a whole.[3] Bernard Stiegler, in Technics and Time, 1, defines technology in two ways: as "the pursuit of life by means other than life", and as "organized inorganic matter."[4]

Technology can be most broadly defined as the entities, both material and immaterial, created by the application of mental and physical effort in order to achieve some value. In this usage, technology refers to tools and machines that may be used to solve real-world problems. It is a far-reaching term that may include simple tools, such as a crowbar or wooden spoon, or more complex machines, such as a space station or particle accelerator. Tools and machines need not be material; virtual technology, such as computer software and business methods, fall under this definition of technology.[5]

The word "technology" can also be used to refer to a collection of techniques. In this context, it is the current state of humanity's knowledge of how to combine resources to produce desired products, to solve problems, fulfill needs, or satisfy wants; it includes technical methods, skills, processes, techniques, tools and raw materials. When combined with another term, such as "medical technology" or "space technology", it refers to the state of the respective field's knowledge and tools. "State-of-the-art technology" refers to the high technology available to humanity in any field.

Technology can be viewed as an activity that forms or changes culture.[6] Additionally, technology is the application of math, science, and the arts for the benefit of life as it is known. A modern example is the rise of communication technology, which has lessened barriers to human interaction and, as a result, has helped spawn new subcultures; the rise of cyberculture has, at its basis, the development of the Internet and the computer.[7] Not all technology enhances culture in a creative way; technology can also help facilitate political oppression and war via tools such as guns. As a cultural activity, technology predates both science and engineering, each of which formalize some aspects of technological endeavor.

Science, engineering and technology

The distinction between science, engineering and technology is not always clear. Science is the reasoned investigation or study of phenomena, aimed at discovering enduring principles among elements of the phenomenal world by employing formal techniques such as the scientific method.[8] Technologies are not usually exclusively products of science, because they have to satisfy requirements such as utility, usability and safety.

Engineering is the goal-oriented process of designing and making tools and systems to exploit natural phenomena for practical human means, often (but not always) using results and techniques from science. The development of technology may draw upon many fields of knowledge, including scientific, engineering, mathematical, linguistic, and historical knowledge, to achieve some practical result.

Technology is often a consequence of science and engineering — although technology as a human activity precedes the two fields. For example, science might study the flow of electrons in electrical conductors, by using already-existing tools and knowledge. This new-found knowledge may then be used by engineers to create new tools and machines, such as semiconductors, computers, and other forms of advanced technology. In this sense, scientists and engineers may both be considered technologists; the three fields are often considered as one for the purposes of research and reference.[9]

Role in human history

Paleolithic (2.5 million – 10,000 BC)

The use of tools by early humans was partly a process of discovery, partly of evolution. Early humans evolved from a race of foraging hominids which were already bipedal,[10] with a brain mass approximately one third that of modern humans.[11] Tool use remained relatively unchanged for most of early human history, but approximately 50,000 years ago, a complex set of behaviors and tool use emerged, believed by many archaeologists to be connected to the emergence of fully-modern language.[12]

Stone tools

A primitive chopper
Hand axes from the Acheulian period
A Clovis point, made via pressure flaking

Human ancestors have been using stone and other tools since long before the emergence of Homo sapiens approximately 200,000 years ago.[13] The earliest methods of stone tool making, known as the Oldowan "industry", date back to at least 2.3 million years ago,[14] with the earliest direct evidence of tool usage found in Ethiopia within the Great Rift Valley, dating back to 2.5 million years ago.[15] This era of stone tool use is called the Paleolithic, or "Old stone age", and spans all of human history up to the development of agriculture approximately 12,000 years ago.

To make a stone tool, a "core" of hard stone with specific flaking properties (such as flint) was struck with a hammerstone. This flaking produced a sharp edge on the core stone as well as on the flakes, either of which could be used as tools, primarily in the form of choppers or scrapers.[16] These tools greatly aided the early humans in their hunter-gatherer lifestyle to perform a variety of tasks including butchering carcasses (and breaking bones to get at the marrow); chopping wood; cracking open nuts; skinning an animal for its hide; and even forming other tools out of softer materials such as bone and wood.[17]

The earliest stone tools were crude, being little more than a fractured rock. In the Acheulian era, beginning approximately 1.65 million years ago, methods of working these stone into specific shapes, such as hand axes emerged. The Middle Paleolithic, approximately 300,000 years ago, saw the introduction of the prepared-core technique, where multiple blades could be rapidly formed from a single core stone.[16] The Upper Paleolithic, beginning approximately 40,000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely.[18]

Fire

The discovery and utilization of fire, a simple energy source with many profound uses, was a turning point in the technological evolution of humankind.[19] The exact date of its discovery is not known; evidence of burnt animal bones at the Cradle of Humankind suggests that the domestication of fire occurred before 1,000,000 BCE;[20] scholarly consensus indicates that Homo erectus had controlled fire by between 500,000 BCE and 400,000 BCE.[21][22] Fire, fueled with wood and charcoal, allowed early humans to cook their food to increase its digestibility, improving its nutrient value and broadening the number of foods that could be eaten.[23]

Clothing and shelter

Other technological advances made during the Paleolithic era were clothing and shelter; the adoption of both technologies cannot be dated exactly, but they were a key to humanity's progress. As the Paleolithic era progressed, dwellings became more sophisticated and more elaborate; as early as 380,000 BCE, humans were constructing temporary wood huts.[24][25] Clothing, adapted from the fur and hides of hunted animals, helped humanity expand into colder regions; humans began to migrate out of Africa by 200,000 BCE and into other continents, such as Eurasia.[26]

Humans began to work bones, antler, and hides, as evidenced by burins and racloirs produced during this period.[citation needed]

Neolithic through Classical Antiquity (10,000BCE – 300CE)

An array of Neolithic artifacts, including bracelets, axe heads, chisels, and polishing tools.

Man's technological ascent began in earnest in what is known as the Neolithic period ("New stone age"). The invention of polished stone axes was a major advance because it allowed forest clearance on a large scale to create farms. The discovery of agriculture allowed for the feeding of larger populations, and the transition to a sedentist lifestyle increased the number of children that could be simultaneously raised, as young children no longer needed to be carried, as was the case with the nomadic lifestyle. Additionally, children could contribute labor to the raising of crops more readily than they could to the hunter-gatherer lifestyle.[27][28]

With this increase in population and availability of labor came an increase in labor specialization.[29] What triggered the progression from early Neolithic villages to the first cities, such as Uruk, and the first civilizations, such as Sumer, is not specifically known; however, the emergence of increasingly hierarchical social structures, the specialization of labor, trade and war amongst adjacent cultures, and the need for collective action to overcome environmental challenges, such as the building of dikes and reservoirs, are all thought to have played a role.[30]

Metal tools

Continuing improvements led to the furnace and bellows and provided the ability to smelt and forge native metals (naturally occurring in relatively pure form).[31] Gold, copper, silver, and lead, were such early metals. The advantages of copper tools over stone, bone, and wooden tools were quickly apparent to early humans, and native copper was probably used from near the beginning of Neolithic times (about 8000 BCE).[32] Native copper does not naturally occur in large amounts, but copper ores are quite common and some of them produce metal easily when burned in wood or charcoal fires. Eventually, the working of metals led to the discovery of alloys such as bronze and brass (about 4000 BCE). The first uses of iron alloys such as steel dates to around 1400 BCE.

Meanwhile, humans were learning to harness other forms of energy. The earliest known use of wind power is the sailboat.[citation needed] The earliest record of a ship under sail is shown on an Egyptian pot dating back to 3200 BCE.[citation needed] From prehistoric times, Egyptians probably used "the power of the Nile" annual floods to irrigate their lands, gradually learning to regulate much of it through purposely-built irrigation channels and 'catch' basins. Similarly, the early peoples of Mesopotamia, the Sumerians, learned to use the Tigris and Euphrates rivers for much the same purposes. But more extensive use of wind and water (and even human) power required another invention.

The wheel was invented in circa 4000 BCE.

According to archaeologists, the wheel was invented around 4000 B.C. The wheel was likely independently invented in Mesopotamia (in present-day Iraq) as well. Estimates on when this may have occurred range from 5500 to 3000 B.C., with most experts putting it closer to 4000 B.C. The oldest artifacts with drawings that depict wheeled carts date from about 3000 B.C.; however, the wheel may have been in use for millennia before these drawings were made. There is also evidence from the same period of time that wheels were used for the production of pottery. (Note that the original potter's wheel was probably not a wheel, but rather an irregularly shaped slab of flat wood with a small hollowed or pierced area near the center and mounted on a peg driven into the earth. It would have been rotated by repeated tugs by the potter or his assistant.) More recently, the oldest-known wooden wheel in the world was found in the Ljubljana marshes of Slovenia.[33]

The invention of the wheel revolutionized activities as disparate as transportation, war, and the production of pottery (for which it may have been first used). It didn't take long to discover that wheeled wagons could be used to carry heavy loads and fast (rotary) potters' wheels enabled early mass production of pottery. But it was the use of the wheel as a transformer of energy (through water wheels, windmills, and even treadmills) that revolutionized the application of nonhuman power sources.

Modern history (0CE —)

Tools include both simple machines (such as the lever, the screw, and the pulley), and more complex machines (such as the clock, the engine, the electric generator and the electric motor, the computer, radio, and the Space Station, among many others). An integrated circuit — a key foundation for modern computers. As tools increase in complexity, so does the type of knowledge needed to support them. Complex modern machines require libraries of written technical manuals of collected information that has continually increased and improved — their designers, builders, maintainers, and users often require the mastery of decades of sophisticated general and specific training. Moreover, these tools have become so complex that a comprehensive infrastructure of technical knowledge-based lesser tools, processes and practices (complex tools in themselves) exist to support them, including engineering, medicine, and computer science. Complex manufacturing and construction techniques and organizations are needed to construct and maintain them. Entire industries have arisen to support and develop succeeding generations of increasingly more complex tools. The relationship of technology with society ( culture) is generally characterized as synergistic, symbiotic, co-dependent, co-influential, and co-producing, i.e. technology and society depend heavily one upon the other (technology upon culture, and culture upon technology). It is also generally believed that this synergistic relationship first occurred at the dawn of humankind with the invention of simple tools, and continues with modern technologies today. Today and throughout history, technology influences and is influenced by such societal issues/factors as economics, values, ethics, institutions, groups, the environment, government, among others. The discipline studying the impacts of science, technology, and society and vice versa is called Science and technology in society.

Technology and philosophy

Technicism

Generally, technicism is an over reliance or overconfidence in technology as a benefactor of society.

Taken to extreme, some argue that technicism is the belief that humanity will ultimately be able to control the entirety of existence using technology. In other words, human beings will someday be able to master all problems and possibly even control the future using technology. Some, such as Monsma,[34] connect these ideas to the abdication of religion as a higher moral authority.

More commonly, technicism is a criticism of the commonly held belief that newer, more recently-developed technology is "better." For example, more recently-developed computers are faster than older computers, and more recently-developed cars have greater gas efficiency and more features than older cars. Because current technologies are generally accepted as good, future technological developments are not considered circumspectly, resulting in what seems to be a blind acceptance of technological development.

Optimism

Optimistic assumptions are made by proponents of ideologies such as transhumanism and singularitarianism, which view technological development as generally having beneficial effects for the society and the human condition. In these ideologies, technological development is morally good. Some critics see these ideologies as examples of scientism and techno-utopianism and fear the notion of human enhancement and technological singularity which they support. Some have described Karl Marx as a techno-optimist.[35]

Pessimism

On the somewhat pessimistic side are certain philosophers like the Herbert Marcuse and John Zerzan, who believe that technological societies are inherently flawed a priori. They suggest that the result of such a society is to become evermore technological at the cost of freedom and psychological health (and probably physical health in general, as pollution from technological products is dispersed).

Many, such as the Luddites and prominent philosopher Martin Heidegger, hold serious reservations, although not a priori flawed reservations, about technology. Heidegger presents such a view in "The Question Concerning Technology": "Thus we shall never experience our relationship to the essence of technology so long as we merely conceive and push forward the technological, put up with it, or evade it. Everywhere we remain unfree and chained to technology, whether we passionately affirm or deny it."[36]

Some of the most poignant criticisms of technology are found in what are now considered to be dystopian literary classics, for example Aldous Huxley's Brave New World and other writings, Anthony Burgess's A Clockwork Orange, and George Orwell's Nineteen Eighty-Four. And, in Faust by Goethe, Faust's selling his soul to the devil in return for power over the physical world, is also often interpreted as a metaphor for the adoption of industrial technology.

An overtly anti-technological treatise is Industrial Society and Its Future, written by Theodore Kaczynski (aka The Unabomber) and printed in several major newspapers (and later books) as part of an effort to end his bombing campaign of the techno-industrial infrastructure.

Appropriate technology

The notion of appropriate technology, however, was developed in the 20th century (e.g., see the work of Jacques Ellul) to describe situations where it was not desirable to use very new technologies or those that required access to some centralized infrastructure or parts or skills imported from elsewhere. The eco-village movement emerged in part due to this concern.

Other species

Credit: Public Library of Science
This adult gorilla uses a branch as a walking stick to gauge the water's depth; an example of technology usage by primates.

The use of basic technology is also a feature of other species apart from humans. These include primates such as chimpanzees, some dolphin communities,[37][38] and crows.[39][40]

The ability to make and use tools was once considered a defining characteristic of the genus Homo.[41] However, the discovery of tool construction among chimpanzees and related primates has discarded the notion of the use of technology as unique to humans. For example, researchers have observed wild chimpanzees utilising tools for foraging: some of the tools used include leaf sponges, termite fishing probes, pestles and levers.[42] West African chimpanzees also use stone hammers and anvils for cracking nuts.[43]

See also

Template:Multicol

Template:Multicol-break

Template:Multicol-end

Theories and concepts in technology

Template:Multicol

Template:Multicol-break

Template:Multicol-end

Economics of technology

Notes

  1. ^ a b "Definition of technology". Merriam-Webster. Retrieved 2007-02-16.
  2. ^ Franklin, Ursula. "Real World of Technology". House of Anansi Press. Retrieved 2007-02-13.
  3. ^ "Technology news". BBC News. Retrieved 2006-02-17.
  4. ^ Stiegler, Bernard (1998). Technics and Time, 1: The Fault of Epimetheus. Stanford University Press. pp. 17, 82. ISBN 0-8047-3041-3. {{cite book}}: Check |isbn= value: checksum (help)
  5. ^ "Industry, Technology and the Global Marketplace: International Patenting Trends in Two New Technology Areas". Science and Engineering Indicators 2002. National Science Foundation. Retrieved 2007-05-07.
  6. ^ Borgmann, Albert (2006). "Technology as a Cultural Force: For Alena and Griffin" (fee required). The Canadian Journal of Sociology. 31 (3): 351–360. Retrieved 2007-02-16.
  7. ^ Macek, Jakub. "Defining Cyberculture". Retrieved 2007-05-25.
  8. ^ "Science". Dictionary.com. Retrieved 2007-02-17.
  9. ^ "Intute: Science, Engineering and Technology". Intute. Retrieved 2007-02-17.
  10. ^ "Mother of man - 3.2 million years ago". BBC. Retrieved 2008-05-17.
  11. ^ "Human Evolution". History channel. Retrieved 2008-05-17.
  12. ^ Wade, Nicholas (2003-07-15). "Early Voices: The Leap to Language". The New York Times. Retrieved 2008-05-17.
  13. ^ "Human Ancestors Hall: Homo sapiens". Smithsonian Institution. Retrieved 2007-12-08.
  14. ^ "Ancient 'tool factory' uncovered". BBC News. 1999-05-06. Retrieved 2007-02-18.
  15. ^ Heinzelin, Jean de (April 1999). "Environment and Behavior of 2.5-Million-Year-Old Bouri Hominids". Science. 284 (5414): 625–629. doi:10.1126/science.284.5414.625. {{cite journal}}: |format= requires |url= (help)
  16. ^ a b Burke, Ariane. "Archaeology". Encyclopedia Americana. Retrieved 2008-05-17.
  17. ^ Plummer, Thomas (2004). "Flaked Stones and Old Bones: Biological and Cultural Evolution at the Dawn of Technology" (47). Yearbook of Physical Anthropology. {{cite journal}}: |format= requires |url= (help); Cite journal requires |journal= (help)
  18. ^ Haviland, William A. (2004). Cultural Anthropology: The Human Challenge. The Thomson Corporation. p. 77. ISBN 0534624871.
  19. ^ Crump, Thomas (2001). A Brief History of Science. Constable & Robinson. p. 9. ISBN 1-84119-235-X.
  20. ^ "Fossil Hominid Sites of Sterkfontein, Swartkrans, Kromdraai, and Environs". UNESCO. Retrieved 2007-03-10.
  21. ^ "History of Stone Age Man". History World. Retrieved 2007-02-13.
  22. ^ James, Steven R. (February 1989). "Hominid Use of Fire in the Lower and Middle Pleistocene" (fee required). Current Anthropology. 30 (1): 1–26.
  23. ^ Stahl, Ann B. (1984). "Hominid dietary selection before fire" (fee required). Current Anthropology. 25: 151–168.
  24. ^ O'Neil, Dennis. "Evolution of Modern Humans: Archaic Homo sapiens Culture". Palomar College. Retrieved 2007-03-31.
  25. ^ Villa, Paola (1983). Terra Amata and the Middle Pleistocene archaeological record of southern France. Berkeley: University of California Press. p. 303. ISBN 0-520-09662-2.
  26. ^ Cordaux, Richard (2003). "South Asia, the Andamanese and the genetic evidence for an "early" human dispersal out of Africa" (PDF). American Journal of Human Genetics. 72: 1586. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  27. ^ "The First Baby Boom: Skeletal Evidence Shows Abrupt Worldwide Increase In Birth Rate During Neolithic Period". Science Daily. 2006-01-04. Retrieved 2008-05-17.
  28. ^ Sussman, Robert W. (April 1972). "Child Transport, Family Size, and Increase in Human Population During the Neolithic". Current Anthropology. 13 (2). University of Chicago Press: 258–267. Retrieved 2008-05-17. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  29. ^ Ferraro, Gary P. (2006). "Cultural Anthropology: An Applied Perspective". The Thomson Corporation. ISBN 0495030392. Retrieved 2008-05-17.
  30. ^ Patterson, Gordon M. (1992). "The ESSENTIALS of Ancient History". Research & Education Association. Retrieved 2008-05-17.
  31. ^ Cramb, Alan W. "A Short History of Metals". Carnegie Mellon University. Retrieved 2007-01-08.
  32. ^ Chisholm, Hugh (1910). Encyclopædia Britannica. p. 708 http://books.google.com/books?id=VANVAEjBG-QC&pg=PA708&lr=&as_brr=1&ei=fl2NR6ODGYbWiwGW8Zi_BA. Retrieved 2008-05-17. {{cite encyclopedia}}: Missing or empty |title= (help)
  33. ^ "Slovenian Marsh Yields World's Oldest Wheel". Ameriška Domovina. 2003-03-27. Retrieved 2007-02-13.
  34. ^ Monsma, Stephen V. (1986). Responsible Technology. Grand Rapids: W.B. Eerdmans Pub. Co.
  35. ^ Hughes, James (2002). "Democratic Transhumanism 2.0". Retrieved 2007-01-26. {{cite journal}}: Cite journal requires |journal= (help)
  36. ^ Lovitt, William (1977). "The Question Concerning Technology". The Question Concerning Technology and Other Essays. Harper Torchbooks. pp. 3–35. Retrieved 2007-11-21.
  37. ^ Sagan, Carl; Druyan, Ann; Leakey, Richard. "Chimpanzee Tool Use". Retrieved 2007-02-13.{{cite web}}: CS1 maint: multiple names: authors list (link)
  38. ^ Rincon, Paul (2005-06-07). "Sponging dolphins learn from mum". BBC News. Retrieved 2007-02-13.
  39. ^ Schmid, Randolph E. (2007-10-04). "Crows use tools to find food". MSNBC. Retrieved 2008-05-17.
  40. ^ Rutz, C.; Bluff, L.A.; Weir, A.A.S.; Kacelnik, A. (2007-10-04). "Video cameras on wild birds". Science.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  41. ^ Oakley, K. P. (1976). Man the Tool-Maker. University of Chicago Press. ISBN 978-0226612706.
  42. ^ McGrew, W. C (1992). Chimpanzee Material Culture. ISBN 978-0521423717. {{cite book}}: Unknown parameter |publsher= ignored (|publisher= suggested) (help)
  43. ^ Boesch, Christophe (1984). "Mental map in wild chimpanzees: An analysis of hammer transports for nut cracking" (fee required). Primates (25): 160–170. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)

References

Further reading

  • Kremer, Michael. 1993. "Population Growth and Technological Change: One Million B.C. to 1990", The Quarterly Journal of Economics 108(3): 681-716.