Jump to content

Energy budget

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Alexbot (talk | contribs) at 21:56, 25 May 2008 (robot Adding: de:Energiebilanz (Ökologie)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

An energy budget is a balance sheet of energy income against expenditure. It is studied in the field of Energetics which deals with the study of energy transfer and transformation from one form to another. Calorie is the basic unit of measurement. An organism in a laboratory experiments is an open thermodynamic system, exchanging energy with its surroundings in three ways-heat, work and the potential energy of biochemical compounds.

Fishes , like all organism, use ingested food resources (C) as building blocks in the synthesis of tissues (P=production) and as fuel in the metabolic process that power this synthesis and other physiological process (R). Some of the resources are last as waste products (E). All these aspects of metabolism can be represented in energy units. [citation needed]The basic model of energy budget may be shown as:

P = C - R - U - F or

P = C - (R + U + F) or

C = P + R + U + F

All the aspects of metabolism can be represented in energy units. (e.g. joules (J);1 food calorie = 4.2 kJ). Energy used for metabolism will be

R = C - (F + U + P)

Energy used in the maintenance will be

R + F + U = C - P

The compilation of energy budget for fish has a fairly short history, with the result that literature on the subject is limited. [citation needed]

References


  • Kumar, Ranjan (1999) : Studies on Bioenergics modelling in a fresh water fish, Mystus vittatus (Bloch), Ph.D thesis, Magadh University, Bodh Gaya.
  • B.R. Braaten.(1976): Bioenergetics-a review on Methodology In Halver J,E and K. Tiews (eds). Finfish nutrition and Finfish Technology vol. II, pp. 461-504. Berlin, Hennemann.
  • Brett, J.R(1962). And T.D.D. Groves (1979). Physiological energetics. In W.S. Hoar, D.J. Randall & J.R. Brett(eds). In : Fish Physiology, Vol VII. PP.279-352. N.Y,; A.P.
  • Cui, Y and R.J. Wootton (1988) : Bioenergetics of growth of a cyprinid Phoxinus phoxinus : the effect of ration, temperature, and body size on food consumption, faecal and nitrogen excretion. J.Fish. Biol, 33 : 431-443
  • Elliott, J.M. and L.Persson (1978) : The estimation of daily rate of food consumption for fish. J. Anim. Ecol. 47,977.
  • Fischer, Z (1983) : The elements of energy of energy balance in grass carp ( Ctenophayngodon idella) part-IV, consumption rate of grass carp fed on different types of food.
  • Kerr, S.R.(1982) Estimating the energy budgets of actively predatory fishes. Can. J.Fish Aqual. Sci, 39-371
  • Kleiber, M. (1961) The fire of life- An Introduction to animal Energetics. Wiley, Newyork
  • Prabhakar, A.K. (1997) : Studies on energy budget in a siluroid fish, Heteropneustes fossilis (Bloch), Ph.D thesis, Magadh University, Bodh Gaya.
  • Ray, A.K and B.C. Patra (1987) : Method for collecting fish faeces for studying the digestibility of feeds J. Inland. Fish Soc. India. 19 (I) 71-73
  • Sengupta, A. and Amitta Moitra (1996) : Energy Budget in relation to various dietary conditions in snake headed murrel, Channa punctatus : Proc. 83rd ISCA : ABS No. 95 : pp. 56
  • Staples, D.J. and M.Nomura (1976) : Influence of body size and food ration on the energy budget of rainbow trout, Salmo gairdneri (Rechardson). J. Fish Biol. 9, 29.
  • Von Bertalanfly, L. (1957) : Quantitative law in Metabolism. Quartz. Rev. biol. 32 : 217-231
  • Warren, C.E.and G.E. Davies (1967) : Laboratory studies on the feeding bioenergetics and growth of fishes. In : Gerking, S.D. (eds). The biological basis for freshwater Fish Production. Pp. 175-214. Oxford, Blackwell.