Stellar classification
In astronomy, stellar classification is a classification of stars based initially on photospheric temperature and its associated spectral characteristics, and subsequently refined in terms of other characteristics. Stellar temperatures can be classified by using Wien's displacement law, but this poses difficulties for distant stars. Stellar spectroscopy offers a way to classify stars according to their absorption lines; particular absorption lines can be observed only for a certain range of temperatures because only in that range are the involved atomic energy levels populated. An early scheme (from the 19th century) ranked stars from A to Q, which is the origin of the currently used spectral classes.
Secchi classes
During the 1860s and 1870s, pioneering stellar spectroscopist Father Angelo Secchi created the Secchi classes in order to classify observed spectra. By 1866, he had developed three classes of stellar spectra:[1][2][3]
- Class I: white and blue stars with broad heavy hydrogen lines, such as Vega and Altair. This includes the modern class A and early class F.
- Class II: yellow stars—hydrogen less strong, but evident metallic lines, such as Arcturus and Capella. This includes the modern classes G and K as well as late class F.
- Class III: orange to red stars with complex band spectra, such as Betelgeuse and Antares. This corresponds to the modern class M.
In 1868, he discovered carbon stars, which he put into a distinct group:[4]
- Class IV: red stars with significant carbon bands and lines (carbon stars.)
In 1877, he added a fifth class:[5]
- Class V: emission-line stars, such as γ Cassiopeiae and β Lyrae.
In the late 1890s, this classification began to be superseded by the Harvard classification, which is discussed in the remainder of this article.[6][7]
Harvard spectral classification
The Harvard classification system is a one-dimensional classification scheme. Physically, the classes indicate the temperature of the star's atmosphere and are normally listed from hottest to coldest, as is done in the following table (with mass, radius and luminosity compared to the Sun added):
Class | Temperature | Conventional color | Apparent color[8][9] | Mass (solar masses) |
Radius (solar radii) |
Luminosity | Hydrogen lines | % of all Main Sequence Stars[10] |
---|---|---|---|---|---|---|---|---|
O | 30,000–60,000 K | blue | blue | 64 M☉ | 16 R☉ | 1,400,000 L☉ | Weak | ~0.00003% |
B | 10,000–30,000 K | blue to blue white | blue white | 18 M☉ | 7 R☉ | 20,000 L☉ | Medium | 0.13% |
A | 7,500–10,000 K | white | white | 3.1 M☉ | 2.1 R☉ | 40 L☉ | Strong | 0.6% |
F | 6,000–7,500 K | yellowish white | white | 1.7 M☉ | 1.4 R☉ | 6 L☉ | Medium | 3% |
G | 5,000–6,000 K | yellow | yellowish white | 1.1 M☉ | 1.1 R☉ | 1.2 L☉ | Weak | 7.6% |
K | 3,500–5,000 K | orange | yellow orange | 0.8 M☉ | 0.9 R☉ | 0.4 L☉ | Very weak | 12.1% |
M | 2,000–3,500 K | red | orange red | 0.4 M☉ | 0.5 R☉ | 0.04 L☉ | Very weak | 76.45% |
The mass, radius, and luminosity listed for each class are appropriate only for stars on the main sequence portion of their lives and so are not appropriate for red giants. A popular mnemonic for remembering the order is "Oh Be A Fine Girl/Guy, Kiss Me" (there are many variants of this mnemonic). The spectral classes O through M are subdivided by Arabic numerals (0–9). For example, A0 denotes the hottest stars in the A class and A9 denotes the coolest ones. The Sun is classified as G2.
Secchi | Draper | Comment |
---|---|---|
I | A, B, C, D | Hydrogen lines dominant. |
II | E, F, G, H, I, K, L | |
III | M | |
IV | N | Did not appear in the catalogue. |
O | Wolf-Rayet spectra with bright lines. | |
P | Planetary nebulae. | |
Q | Other spectra. |
The reason for the odd arrangement of letters is historical. An early classification of spectra by Angelo Secchi in the 1860s divided stars into those with prominent lines from the hydrogen Balmer series (group I, with a subtype representing many of the stars in Orion); those with spectra which, like the Sun, showed calcium and sodium lines (group II); colored stars whose spectra showed wide bands (group III); and carbon stars (group IV).[13] In the 1880s, the astronomer Edward C. Pickering began to make a survey of stellar spectra at the Harvard College Observatory, using the objective-prism method. A first result of this work was the Draper Catalogue of Stellar Spectra, published in 1890. Williamina Fleming classified most of the spectra in this catalogue. It used a scheme in which the previously used Secchi classes (I to IV) were divided into more specific classes, given letters from A to N. Also, the letters O, P and Q were used, O for stars whose spectra consisted mainly of bright lines, P for planetary nebulae, and Q for stars not fitting into any other class.[11][12]
In 1897, another worker at Harvard, Antonia Maury, placed the Orion subtype of Secchi class I ahead of the remainder of Secchi class I, thus placing the modern type B ahead of the modern type A. She was the first to do so, although she did not use lettered spectral types, but rather a series of 22 types numbered from I to XXII.[14][15] In 1901, Annie Jump Cannon returned to the lettered types, but dropped all letters except O, B, A, F, G, K, and M, used in that order, as well as P for planetary nebulae and Q for some peculiar spectra. She also used types such as B5A for stars halfway between types B and A, F2G for stars one-fifth of the way from F to G, and so forth.[16][17] Finally, by 1912, Cannon had changed the types B, A, B5A, F2G, etc. to B0, A0, B5, F2, etc.[18][19] This is essentially the modern form of the Harvard classification system.
The fact that the Harvard classification of a star indicated its surface temperature was not fully understood until after its development. In the 1920s, the Indian physicist Megh Nad Saha derived a theory of ionization by extending well-known ideas in physical chemistry pertaining to the dissociation of molecules to the ionization of atoms. First applied to the solar chromosphere, he then applied it to stellar spectra.[20] The Harvard astronomer Cecilia Helena Payne (later to become Cecilia Payne-Gaposchkin) then demonstrated that the OBAFGKM spectral sequence is actually a sequence in temperature.[21] Because the classification sequence predates our understanding that it is a temperature sequence, the placement of a spectrum into a given subtype, such as B3 or A7, depends upon (largely subjective) estimates of the strengths of absorption features in stellar spectra. As a result, these subtypes are not evenly divided into any sort of mathematically representable intervals.
O, B, and A stars are sometimes misleadingly called "early type", while K and M stars are said to be "late type". This stems from a early 20th century model of stellar evaluation in which stars were powered by gravitational contraction via the Kelvin–Helmholtz mechanism in which stars start their lives as very hot "early type" stars, and then gradually cool down, thereby evolving into "late type" stars. This mechanism provided ages of the sun that were much smaller than what is observed, and was rendered obsolete by the discovery that stars are powered by nuclear fusion. However, brown dwarfs, whose energy comes from gravitational attraction alone, cool as they age and so progress to later spectral types. The highest mass brown dwarfs start their lives with M-type spectra and will cool through the L, T, and Y spectral classes.
Conventional and apparent colors
The Conventional color descriptions are traditional in astronomy, and represent colors relative to Vega, a star that is perceived as white under naked eye observational conditions[citation needed], but which magnified appears as blue. The Apparent color[8] descriptions is what the observer would see if trying to describe the stars under a dark sky without aid to the eye, or with binoculars. The table colors used, are D65 standard colors, which are what you would see if the star light would be magnified to be filling non-dazzlingly bright areas. [22] Most stars in the sky, except the brightest ones, appear white or bluish white to the unaided eye because they are too dim for color vision to work.
Our Sun itself is white. It is sometimes called a yellow star (spectroscopically, relative to Vega), and may appear yellow or red (viewed through the atmosphere), or appear white (viewed when too bright for the eye to see any color). Astronomy images often use a variety of exaggerated colors (partially founded in faint light conditions observations, partially in conventions). But the Sun's own intrinsic color is white (aside from sunspots), with no trace of color, and closely approximates a black body of 5780 K (see color temperature). This is a natural consequence of the evolution of our optical senses: the response curve that maximizes the overall efficiency against solar illumination will by definition perceive the Sun as white. The sun is known as a G type star.
Yerkes spectral classification
The Yerkes spectral classification, also called the MKK system from the authors' initials, is a system of stellar spectral classification introduced in 1943 by William Wilson Morgan, Phillip C. Keenan and Edith Kellman from Yerkes Observatory.[23] This classification is based on spectral lines sensitive to stellar surface gravity which is related to luminosity, as opposed to the Harvard classification which is based on surface temperature. Later, in 1953, after some revisions of list of standard stars and classification criteria, the scheme was named MK (by William Wilson Morgan and Phillip C. Keenan initials).[24]
Since the radius of a giant star is much larger than a dwarf star while their masses are roughly comparable, the gravity and thus the gas density and pressure on the surface of a giant star are much lower than for a dwarf. These differences manifest themselves in the form of luminosity effects which affect both the width and the intensity of spectral lines which can then be measured. Denser stars with higher surface gravity will exhibit greater pressure broadening of spectral lines.
A number of different luminosity classes are distinguished:
- I supergiants
- Ia-0 (hypergiants or extremely luminous supergiants (later addition)), Example: Eta Carinae (spectrum-peculiar)
- Ia (luminous supergiants), Example: Deneb (spectrum is A2Ia)
- Iab (intermediate luminous supergiants)
- Ib (less luminous supergiants), Example: Betelgeuse (spectrum is M2Ib)
- II bright giants
- IIa, Example: β Scuti (HD 173764) (spectrum is G4 IIa)
- IIab Example: HR 8752 (spectrum is G0Iab:)
- IIb, Example: HR 6902 (spectrum is G9 IIb)
- III normal giants
- IIIa, Example: ρ Persei (spectrum is M4 IIIa)
- IIIab Example: δ Reticuli (spectrum is M2 IIIab)
- IIIb, Example: Pollux (spectrum is K2 IIIb)
- IV subgiants
- IVa, Example: ε Reticuli (spectrum is K1-2 IVa-III)
- IVb, Example: HR 672 A (spectrum is G0.5 IVb)
- V main sequence stars (dwarfs)
- Va, Example: AD Leonis (spectrum M4Vae)
- Vb, Example: 85 Pegasi A (spectrum G5 Vb)
- VI subdwarfs (rarely used)
- VII white dwarfs (rarely used)
Marginal cases are allowed; for instance a star classified as Ia0-Ia would be a very luminous supergiant, verging on hypergiant. Examples are below. The spectral type of the star is not a factor.
Marginal Symbols | Example | Explanation |
---|---|---|
- | G2 I-II | The star is between super giant and bright giant. |
+ | O9.5 Ia+ | The star is a hypergiant star. |
/ | M2 IV/V | The star is either a subgiant or a dwarf star. |
Spectral types
The following illustration represents star classes with the colors very close to those actually perceived by the human eye. The relative sizes are for main sequence or "dwarf" stars.
Class O
Class O stars are very hot and very luminous, being bluish in color; in fact, most of their output is in the ultraviolet range. These are the rarest of all main sequence stars, constituting as few as 1 in 3,000,000 in the solar neighborhood (Note: these proportions are fractions of stars brighter than absolute magnitude 16; lowering this limit will render earlier types even rarer while generally adding only to the M class).[10] O-stars shine with a power over a million times our Sun's output. These stars have dominant lines of absorption and sometimes emission for He II lines, prominent ionized (Si IV, O III, N III, and C III) and neutral helium lines, strengthening from O5 to O9, and prominent hydrogen Balmer lines, although not as strong as in later types. Because they are so huge, class O stars burn through their hydrogen fuel very quickly, and are the first stars to leave the main sequence. Recent observations by the Spitzer Space Telescope indicate that planetary formation does not occur around other stars in the vicinity of an O class star due to the photoevaporation effect.[25]
- Examples: Zeta Orionis, Zeta Puppis, Lambda Orionis, Delta Orionis
Class B
Class B stars are extremely luminous and blue. Their spectra have neutral helium, which are most prominent at the B2 subclass, and moderate hydrogen lines. Ionized metal lines include Mg II and Si II. As O and B stars are so powerful, they only live for a very short time, and thus they do not stray far from the area in which they were formed. These stars tend to cluster together in what are called OB associations, which are associated with giant molecular clouds. The Orion OB1 association occupies a large portion of a spiral arm of our galaxy and contains many of the brighter stars of the constellation Orion. They constitute about 1 in 800 main sequence stars in the solar neighborhood[10] —rare, but much more common than those of class O.
Class A
Class A stars are amongst the more common naked eye stars, and are white or bluish-white. They have strong hydrogen lines, at a maximum by A0, and also lines of ionized metals (Fe II, Mg II, Si II) at a maximum at A5. The presence of Ca II lines is notably strengthening by this point. They comprise about 1 in 160 of the main sequence stars in the solar neighborhood.[10]
Class F
Class F stars have strengthening H and K lines of Ca II. Neutral metals (Fe I, Cr I) beginning to gain on ionized metal lines by late F. Their spectra are characterized by the weaker hydrogen lines and ionized metals. Their color is white. These represent about 1 in 33 of the main sequence stars in the solar neighborhood.[10]
Class G
Class G stars are probably the best known, if only for the reason that our Sun is of this class. Most notable are the H and K lines of Ca II, which are most prominent at G2. They have even weaker hydrogen lines than F, but along with the ionized metals, they have neutral metals. There is a prominent spike in the G band of CH molecules. G is host to the "Yellow Evolutionary Void".[26] Supergiant stars often swing between O or B (blue) and K or M (red). While they do this, they do not stay for long in the G classification as this is an extremely unstable place for a supergiant to be. G stars represent about 1 in 13 of the main sequence stars in the solar neighborhood.[10]
- Examples: Sun, Alpha Centauri A, Capella, Tau Ceti
Class K
Class K are orangish stars which are slightly cooler than our Sun. Some K stars are giants and supergiants, such as Arcturus, while others, like Alpha Centauri B, are main sequence stars. They have extremely weak hydrogen lines, if they are present at all, and mostly neutral metals (Mn I, Fe I, Si I). By late K, molecular bands of titanium oxide become present. These make up 1 in 8 of the main sequence stars in the solar neighborhood.[10]
- Examples: Alpha Centauri B, Epsilon Eridani, Arcturus, Aldebaran
Class M
Class M is by far the most common class. About 76% of the main sequence stars in the solar neighborhood are red dwarfs (78.6% if we include all stars: see the note under Class O),[10] such as Proxima Centauri. M is also host to most giants and some supergiants such as Antares and Betelgeuse, as well as Mira variables. The late-M group holds hotter brown dwarfs that are above the L spectrum. This is usually in the range of M6.5 to M9.5. The spectrum of an M star shows lines belonging to molecules and all neutral metals but hydrogen lines are usually absent. Titanium oxide can be strong in M stars, usually dominating by about M5. Vanadium oxide bands become present by late M.
- Example: Betelgeuse (supergiant)
- Examples: Proxima Centauri, Barnard's star, Gliese 581 (red dwarf)
- Example: LEHPM 2-59 [27] (subdwarf)
- Examples: Teide 1 (field brown dwarf), GSC 08047-00232 B [28] (companion brown dwarf)
Extended spectral types
A number of new spectral types have been taken into use from newly discovered types of stars.
Cool red and brown dwarf classes
The novel spectral types L and T were created to classify infrared spectra of cool stars. This included both red dwarfs and brown dwarfs which are very faint in the visual spectrum. The hypothetical spectral type Y has been reserved for objects cooler than T dwarfs which have spectra that are qualitatively distinct from T dwarfs.[29]
Class L
Class L dwarfs get their designation because they are cooler than M stars and L is the remaining letter alphabetically closest to M. L does not mean lithium dwarf; a large fraction of these stars do not have lithium in their spectra. Some of these objects have mass large enough to support hydrogen fusion, but some are of substellar mass and do not, so collectively these objects should be referred to as L dwarfs, not L stars. They are a very dark red in color and brightest in infrared. Their atmosphere is cool enough to allow metal hydrides and alkali metals to be prominent in their spectra.[30][31] Due to low gravities in giant stars, TiO- and VO-bearing condensates never form. Thus, larger L-type stars can never form in an isolated environment. It may be possible for these L-type supergiants to form through stellar collisions, however, an example of which is V838 Monocerotis.
- L: 1,300–2,000 K, dwarfs (some stellar, some substellar) with metal hydrides and alkali metals prominent in their spectra.
- Example: VW Hyi
- Example: 2MASSW J0746425+2000321 binary[32]
- Component A is an L dwarf star
- Component B is an L brown dwarf
- Example: V838 Monocerotis (supergiants)
Class T: methane dwarfs
Class T dwarfs are cool brown dwarfs with surface temperatures of between approximately 700 and 1,300 K. Their emission peaks in the infrared. Methane is prominent in their spectra.[30][31]
- T: ~700-1,300 K, cooler brown dwarfs with methane in the spectrum
- Examples: SIMP 0136 (the brightest T dwarf discovered in northern hemisphere)[33]
- Examples: Epsilon Indi Ba & Epsilon Indi Bb
Class T and L could be more common than all the other classes combined if recent research is accurate. From studying the number of proplyds (protoplanetary discs, clumps of gas in nebulae from which stars and solar systems are formed) then the number of stars in the galaxy should be several orders of magnitude higher than what we know about. It is theorized that these proplyds are in a race with each other. The first one to form will become a proto-star, which are very violent objects and will disrupt other proplyds in the vicinity, stripping them of their gas. The victim proplyds will then probably go on to become main sequence stars or brown dwarf stars of the L and T classes, but quite invisible to us. Since they live so long, these smaller stars will accumulate over time.
Class Y
Class Y dwarfs are expected to be much cooler than T-dwarfs. They have been modelled[34], though there is no well-defined spectral sequence yet with prototypes. In March 2008, a 620 kelvin brown dwarf named CFBDS J005910.90-011401.3 was discovered, displaying wide ammonia absorption in the near-infrared. It is believed to be the first prototype of a Y0 dwarf. [35]
- Y: < 700 K, ultra-cool brown dwarfs (theoretical)
Carbon related late giant star classes
Carbon related stars are stars whose spectra indicate production of carbon by helium triple-alpha fusion. With increased carbon abundance, and some parallel s-process heavy element production, the spectra of these stars are becoming increasingly deviant from the usual late spectral classes G, K and M. The giants among those stars are presumed to produce this carbon themselves, but not too few of this class of stars are believed to be double stars whose odd atmosphere once was transferred from a former carbon star companion that is now a white dwarf.
Class C: carbon stars
Originally classified as R and N stars, these are also known as 'carbon stars'. These are red giants, near the end of their lives, in which there is an excess of carbon in the atmosphere. The old R and N classes ran parallel to the normal classification system from roughly mid G to late M. These have more recently been remapped into a unified carbon classifier C, with N0 starting at roughly C6. Another subset of cool carbon stars are the J-type stars, which are characterized by the strong presence of molecules of 13CN in addition to those of 12CN.[36] A few dwarf (that is, main sequence) carbon stars are known, but the overwhelming majority of known carbon stars are giants or supergiants.
- C: Carbon stars, e.g. R CMi
- C-R: Formerly a class on its own representing the carbon star equivalent of late G to early K stars. Example: S Camelopardalis
- C-N: Formerly a class on its own representing the carbon star equivalent of late K to M stars. Example: R Leporis
- C-J: A subtype of cool C stars with a high content of 13C. Example: Y Canum Venaticorum
- C-H: Population II analogues of the C-R stars. Examples: V Ari, TT CVn[37]
- C-Hd: Hydrogen-Deficient Carbon Stars, similar to late G supergiants with CH and C2 bands added. Example: HD 137613
Class S
Class S stars have zirconium oxide lines in addition to (or, rarely, instead of) those of titanium oxide, and are in between the Class M stars and the carbon stars.[38] S stars have excess amounts of zirconium and other elements produced by the s-process, and have their carbon and oxygen abundances closer to equal than is the case for M stars. The latter condition results in both carbon and oxygen being locked up almost entirely in carbon monoxide molecules. For stars cool enough for carbon monoxide to form that molecule tends to "eat up" all of whichever element is less abundant, resulting in "leftover oxygen" (which becomes available to form titanium oxide) in stars of normal composition, "leftover carbon" (which becomes available to form the diatomic carbon molecules) in carbon stars, and "leftover nothing" in the S stars. The relation between these stars and the ordinary M stars indicates a continuum of carbon abundance. Like carbon stars, nearly all known S stars are giants or supergiants.
- Examples: S Ursae Majoris, HR 1105
Classes MS and SC: intermediary carbon related classes
In between the M class and the S class, border cases are named MS stars. In a similar way border cases between the S class and the C-N class are named SC or CS. The sequence M → MS → S → SC → C-N is believed to be a sequence of increased carbon abundance with age for carbon stars in the asymptotic giant branch.
- Examples: R Serpentis, ST Monocerotis (MS)
- Examples: CY Cygni, BH Crucis (SC)
White dwarf classifications
The class D is the modern classification used for white dwarfs, low-mass stars that are no longer undergoing nuclear fusion and have shrunk to planetary size, slowly cooling down. Class D is further divided into spectral types DA, DB, DC, DO, DQ, DX, and DZ. The letters are not related to the letters used in the classification of other stars, but instead indicate the composition of the white dwarf's visible outer layer or atmosphere.
- Examples: Sirius B (DA2), Procyon B (DA4), Van Maanen's star (DZ7)[39], Table 1
The white dwarf types are as follows:[40]
- DA: a hydrogen-rich atmosphere or outer layer, indicated by strong Balmer hydrogen spectral lines.
- DB: a helium-rich atmosphere, indicated by neutral helium, He I, spectral lines.
- DO: a helium-rich atmosphere, indicated by ionized helium, He II, spectral lines.
- DQ: a carbon-rich atmosphere, indicated by atomic or molecular carbon lines.
- DZ: a metal-rich atmosphere, indicated by metal spectral lines.
- DC: no strong spectral lines indicating one of the above categories.
- DX: spectral lines are insufficiently clear to classify into one of the above categories.
The type is followed by a number giving the white dwarf's surface temperature. This number is a rounded form of 50400/Teff, where Teff is the effective surface temperature, measured in kelvins. Originally, this number was rounded to one of the digits 1 through 9, but more recently fractional values have started to be used, as well as values below 1 and above 9.[40][41]
Two or more of the type letters may be used to indicate a white dwarf which displays more than one of the spectral features above. Also, the letter V is used to indicate a variable white dwarf.[40]
Extended white dwarf spectral types:[40]
- DAB: a hydrogen- and helium-rich white dwarf displaying neutral helium lines.
- DAO: a hydrogen- and helium-rich white dwarf displaying ionized helium lines.
- DAZ: a hydrogen-rich metallic white dwarf.
- DBZ: a helium-rich metallic white dwarf.
Variable star designations:
- DAV or ZZ Ceti: a hydrogen-rich pulsating white dwarf.[42], pp. 891, 895
- DBV or V777 Her: a helium-rich pulsating white dwarf.[43], p. 3525
- GW Vir, DOV or PNNV: a hot helium-rich pulsating white dwarf (or pre-white dwarf.)[44], §1.1, 1.2;[45][46]
Non-stellar spectral types: Class P & Q
Finally, the classes P and Q are occasionally used for certain non-stellar objects. Type P objects are planetary nebulae and type Q objects are novae.
Spectral peculiarities
Additional nomenclature, in the form of lower-case letters, can follow the spectral type to indicate peculiar features of the spectrum.[47]
Code | Spectral peculiarities for stars |
---|---|
: | Blending and/or uncertain spectral value |
… | Undescribed spectral peculiarities exist |
! | Special peculiarity |
comp | Composite spectrum |
e | Emission lines present |
[e] | "Forbidden" emission lines present |
er | "Reversed" center of emission lines weaker than edges |
ep | Emission lines with peculiarity |
eq | Emission lines with P Cygni profile |
ev | Spectral emission that exhibits variability |
f | NIII and HeII emission (for element name followed by roman numeral see spectral line) |
f+ | SiIV emission in addition to HeII and NIII emission |
f* | NIV emission stronger than NIII emission |
(f) | Weak emission lines of He |
((f)) | Displays strong HeII absorption accompanied by weak NIII emissions[48] |
((f*)) | ???[48] |
He wk | Weak He lines |
k | Spectra with interstellar absorption features |
m | Enhanced metal features |
n | Broad ("nebulous") absorption due to spinning |
nn | Very broad absorption features due to spinning very fast |
neb | A nebula's spectrum mixed in |
p | Unspecified peculiarity, peculiar star. |
pq | Peculiar spectrum, similar to the spectra of novae |
q | Red & blue shifts line present |
s | Narrowly "sharp" absorption lines |
ss | Very narrow lines |
sh | Shell star |
v | Variable spectral feature (also "var") |
w | Weak lines (also "wl" & "wk") |
d Del | Type A and F giants with weak calcium H and K lines, as in prototype Delta Delphini |
d Sct | Type A and F stars with spectra similar to that of short-period variable Delta Scuti |
Code | If spectrum shows enhanced metal features |
Ba | Abnormally strong Barium |
Ca | Abnormally strong Calcium |
Cr | Abnormally strong Chromium |
Eu | Abnormally strong Europium |
He | Abnormally strong Helium |
Hg | Abnormally strong Mercury |
Mn | Abnormally strong Manganese |
Si | Abnormally strong Silicon |
Sr | Abnormally strong Strontium |
Code | Spectral peculiarities for white dwarfs |
: | Uncertain assigned classification |
P | Magnetic white dwarf with detectable polarization |
E | Emission lines present |
H | Magnetic white dwarf without detectable polarization |
V | Variable |
PEC | Spectral peculiarities exist |
For example, Epsilon Ursae Majoris is listed as spectral type A0pCr, indicating general classification A0 with a strong emission lines of the element chromium. There are several common classes of chemically peculiar stars, where the spectral lines of a number of elements appear abnormally strong.
Photometric classification
Stars can also be classified using photometric data from any photometric system. For example, we can calibrate color index diagrams of U−B and B−V in the UBV system according to spectral and luminosity classes. Nevertheless, this calibration is not straightforward, because many effects are superimposed in such diagrams: interstellar reddening, color changes due to metallicity, and the blending of light from binary and multiple stars.
Photometric systems with more colors and narrower passbands allow a star's class, and hence physical parameters, to be determined more precisely. The most accurate determination comes of course from spectral measurements, but there is not always enough time to get qualitative spectra with high signal-to-noise ratio.
See also
References
- ^ Analyse spectrale de la lumière de quelques étoiles, et nouvelles observations sur les taches solaires, P. Secchi, Comptes Rendus des Séances de l'Académie des Sciences 63 (July–December 1866), pp. 364–368.
- ^ Nouvelles recherches sur l'analyse spectrale de la lumière des étoiles, P. Secchi, Comptes Rendus des Séances de l'Académie des Sciences 63 (July–December 1866), pp. 621–628.
- ^ pp. 60, 134, The Analysis of Starlight: One Hundred and Fifty Years of Astronomical Spectroscopy, J. B. Hearnshaw, Cambridge, UK: Cambridge University Press, 1986, ISBN 0-521-25548-1.
- ^ pp. 62–63, Hearnshaw 1986.
- ^ p. 60, Hearnshaw 1986.
- ^ Classification of Stellar Spectra: Some History
- ^ pp. 62–63, Stars and Their Spectra: An Introduction to the Spectral Sequence, James B. Kaler, Cambridge: Cambridge University Press, 1997, ISBN 0521585708.
- ^ a b The Guinness book of astronomy facts & feats, Patrick Moore, 1992, 0-900424-76-1 Cite error: The named reference "möre" was defined multiple times with different content (see the help page).
- ^ "The Colour of Stars". Australia Telescope Outreach and Education. 2004-12-21. Retrieved 2007-09-26.
{{cite web}}
: Check date values in:|date=
(help) — Explains the reason for the difference in color perception. - ^ a b c d e f g h LeDrew, G.; The Real Starry Sky, Journal of the Royal Astronomical Society of Canada, Vol. 95, No. 1 (whole No. 686, February 2001), pp. 32–33 - Note Table 2 has an error and so this article will use 824 as the assumed correct total of main sequence stars
- ^ a b The Draper Catalogue of stellar spectra photographed with the 8-inch Bache telescope as a part of the Henry Draper memorial, Edward C. Pickering, Annals of Harvard College Observatory 27 (1890), Bibcode:1890AnHar..27....1P. See in particular pp. 1–4.
- ^ a b pp. 106–108, Hearnshaw 1986.
- ^ p. 60–63, Hearnshaw 1986; pp. 623–625, Secchi 1866.
- ^ pp. 111–112, Hearnshaw 1986.
- ^ Spectra of bright stars photographed with the 11-inch Draper Telescope as part of the Henry Draper Memorial, Antonia C. Maury and Edward C. Pickering, Annals of Harvard College Observatory 28, part 1 (1897), pp. 1–128, Bibcode:1897AnHar..28....1M; see in particular Table I.
- ^ Spectra of bright southern stars photographed with the 13-inch Boyden telescope as part of the Henry Draper Memorial, Annie J. Cannon and Edward C. Pickering, Annals of Harvard College Observatory 28, part 2 (1901), pp. 129–263, Bibcode:1901AnHar..28..129C; see in particular pp. 139–143.
- ^ pp. 117–119, Hearnshaw 1986.
- ^ Classification of 1,688 southern stars by means of their spectra, Annie Jump Cannon and Edward C. Pickering, Annals of Harvard College Observatory 56, #5 (1912), pp. 115–164, Bibcode:1912AnHar..56..115C.
- ^ pp. 121–122, Hearnshaw 1986.
- ^ Saha, M. N.; On a Physical Theory of Stellar Spectra, Proceedings of the Royal Society of London, Series A, Volume 99, Issue 697 (May 1921), pp. 135–153
- ^ Payne, C. H.; Stellar Atmospheres; A Contribution to the Observational Study of High Temperature in the Reversing Layers of Stars, Ph. D. Thesis, Radcliffe College, 1925
- ^ Charity, Mitchell. "What color are the stars?". Retrieved 2006-05-13.
- ^ Morgan, William Wilson; Keenan, Philip Childs; Kellman, Edith (1943), "An atlas of stellar spectra, with an outline of spectral classification", Chicago, Ill., The University of Chicago press
- ^ Phillip C. Keenan, William Wilson Morgan (1973). "Spectral Classification". Annual Reviews of Astronomy and Astrophysics. 11. Annual Reviews: 29–50. doi:10.1146/annurev.aa.11.090173.000333.
- ^ Planets Prefer Safe Neighborhoods
- ^ Checking the yellow evolutionary void. Three evolutionary critical Hypergiants: HD 33579, HR 8752 & IRC +10420
- ^ Optical Spectroscopy of 2MASS Color-Selected Ultracool Subdwarfs, Adam J. Burgasser et al., 2006
- ^ Astrometric and Spectroscopic Confirmation of a Brown Dwarf Companion to GSC 08047-00232, G. Chauvin et al., 2004
- ^ Outstanding Issues in Our Understanding of L, T, and Y Dwarfs, J. D. Kirkpatrick, April 2007, arXiv:0704.1522. Accessed on line September 18, 2007.
- ^ a b Kirkpatrick, J. Davy; et al. (July 10, 1999). "Dwarfs Cooler than M: the Definition of Spectral Type L Using Discovery from the 2-µ ALL-SKY Survey (2MASS)". The Astrophysical Journal. 519 (2). The University of Chicago Press: 802–833. doi:10.1086/307414. ISSN: 0004-637X.
{{cite journal}}
: Check date values in:|date=
(help); Explicit use of et al. in:|last=
(help) - ^ a b Kirkpatrick, J. Davy (2005). "New Spectral Types L and T". Annual Reviews of Astronomy and Astrophysics. 43 (1). Annual Reviews: 195–246. doi:10.1146/annurev.astro.42.053102.134017. ISSN: 0066-4146.
- ^ Ultra-cool Diminutive Star Weighs In
- ^ Discovery of the brightest T dwarf in the northern hemisphere, 2007
- ^ Y-Spectral class for Ultra-Cool Dwarfs, N.R.Deacon and N.C.Hambly, 2006
- ^ CFBDS J005910.90-011401.3: reaching the T-Y Brown Dwarf transition?, Philippe Delorme et al. 2008
- ^ Bouigue, R. 1954, Annales d'Astrophysique, Vol. 17, p.104
- ^ Spectral Atlas of Carbon Stars (Barnbaum+ 1996)
- ^ Keenan, P. C. 1954 Astrophysical Journal, vol. 120, p.484
- ^ A Determination of the Local Density of White Dwarf Stars, J. B. Holberg, Terry D. Oswalt and E. M. Sion, The Astrophysical Journal 571, #1 (May 2002), pp. 512–518.
- ^ a b c d A proposed new white dwarf spectral classification system, E. M. Sion, J. L. Greenstein, J. D. Landstreet, J. Liebert, H. L. Shipman, and G. A. Wegner, The Astrophysical Journal 269, #1 (June 1, 1983), pp. 253–257.
- ^ A Catalog of Spectroscopically Identified White Dwarfs, George P. McCook and Edward M. Sion, The Astrophysical Journal Supplement Series 121, #1 (March 1999), pp. 1–130.
- ^ Physics of white dwarf stars, D. Koester and G. Chanmugam, Reports on Progress in Physics 53 (1990), pp. 837–915.
- ^ White dwarfs, Gilles Fontaine and François Wesemael, in Encyclopedia of Astronomy and Astrophysics, ed. Paul Murdin, Bristol and Philadelphia: Institute of Physics Publishing and London, New York and Tokyo: Nature Publishing Group, 2001. ISBN 0333750888.
- ^ Mapping the Instability Domains of GW Vir Stars in the Effective Temperature-Surface Gravity Diagram, Quirion, P.-O., Fontaine, G., Brassard, P., Astrophysical Journal Supplement Series 171 (2007), pp. 219–248.
- ^ §1, Detection of non-radial g-mode pulsations in the newly discovered PG 1159 star HE 1429–1209, T. Nagel and K. Werner, Astronomy and Astrophysics 426 (2004), pp. L45–L48.
- ^ The Extent and Cause of the Pre-White Dwarf Instability Strip, M. S. O'Brien, Astrophysical Journal 532, #2 (April 2000), pp. 1078–1088.
- ^ SkyTonight: The Spectral Types of Stars
- ^ a b Early-type stars in the core of the young open cluster Westerlund2, G.Rauw et al. 2006
External links
- Libraries of stellar spectra, D. Montes, UCM
- Webfooted Astronomer
- The rate of period change in pulsating DB white dwarf stars, A. H. Corsico, L. G. Althaus, has the DAV, DBV, & DOV explanation.
- The Close DAO+dM Binary RE J0720-318: A Stratified White Dwarf with a Thin H Layer and a Possible Circumbinary Disk DAO type White Dwarf.
- The Spatial Distribution and Kinematics of Cool Metallic Line White Dwarfs, has DAZ and DBZ spectrums
- A K-Band Spectral Atlas of Wolf-Rayet Stars, has WC, WN, and WO spectrums
- Properties of the WO Wolf-Rayet stars, has WO spectrum ranging from WO1 to WO5
- Spectral Types for Hipparcos Catalogue Entries
- [1], has the luminous subclasses.
- Discovery of a Very Young Field L Dwarf, 2MASS J01415823-4633574, J. Davy Kirkpatrick et al.