Jump to content

Radicial morphism

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Ringspectrum (talk | contribs) at 10:40, 10 March 2009 (edit according to EGA I, 3.5.4ff.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In algebraic geometry, a domain in mathematics, a morphism of schemes

f:XY

is called radicial or universally injective, if, for every field K the induced map X(K) → Y(K) is injective. (EGA I, (3.5.4))

It suffices to check this for K algebraically closed.

This is equivalent to the following condition: f is injective on the topological spaces and for every point x in X, the extension of the residue fields

k(f(x)) ⊂ k(x)

is radicial, i.e. purely inseparable.

It is also equivalent to every base change of f being injective on the underlying topological spaces. (Thus the term universally injective.)

Radicial morphisms are stable under composition, products and base change. If gf is radicial, so is f.

References

  • Grothendieck, Alexandre; Dieudonné, Jean (1960), "Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : I. Le langage des schémas", Publications Mathématiques de l'IHÉS, 4: 5–228, doi:10.1007/BF02684778, ISSN 1618-1913, section I.3.5.
  • Bourbaki, Nicolas (1988), Algebra, Berlin, New York: Springer-Verlag, ISBN 978-3-540-19373-9, see section V.5.