Talk:Large cardinal
It might be nice if the ones that are considered more central were clearly identified. Any working set theorist needs to know about say a weak compact or measurable cardinal, but nobody talkes about say ineffable cardinals.
Move?
It might make sense to move this article to something like List of large cardinals or List of large cardinal properties. Just a thought; I don't feel very strongly about it. (On the other hand, I might feel more strongly someday, if I wanted to write a general article about large cardinal properties in the abstract). --Trovatore 03:36, 15 July 2005 (UTC)
- The general convention is to separate out lists of links, when they become bulky, making two articles. Charles Matthews 15:18, 15 July 2005 (UTC)
Currently dabbling with this page
I think this page needs some reworking. For one thing, it should really be at large cardinal property ("largeness" is not a property of cardinals; various large cardinal properties are). Then large cardinal axiom should also be defined in boldface. Then we need a discussion of the various "intervals" of large cardinal properties: the "small" ones consistent with V=L, the larger ones that correspond to determinacy of pointclasses, still larger ones for which corresponding determinacy results are not yet known. A more precise description of consistency strength wouldn't hurt either. Woodin's abstract definition of large cardinal property could be mentioned, together with Steel's objections to it (unfortunately I don't think the latter have been published anywhere, so it might be tough to source). In the end I think the list should go to list of large cardinal properties; on length alone it's not unmanageable here, but it's kind of a different subject from the general discussion. --Trovatore 16:14, 5 November 2005 (UTC)
Thank you
Thanks for refactoring this page; I"m struggling to understand Large Cardinals and the simple list of types that was at 'Large_Cardinal(s)' was singularly (heh) unhelpful. --hmackiernan