Jump to content

Surface mining

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 195.195.201.24 (talk) at 13:30, 30 September 2009 (Strip mining). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Coal strip mine in Wyoming

Surface mining is a type of mining where soil and rock overlying the mineral deposit are removed. It is the opposite of underground mining, in which the overlying rock is left in place, and the mineral removed through shafts or tunnels.

Surface mining is used when deposits of commercially useful minerals or rock are found near the surface; that is, where the overburden (surface material covering the valuable deposit) is relatively thin or the material of interest is structurally unsuitable for tunneling (as would usually be the case for sand, cinder, and gravel). Where minerals occur deep below the surface—where the overburden is thick or the mineral occurs as veins in hard rock— underground mining methods are used to extract the valued material. Surface mines are typically enlarged until either the mineral deposit is exhausted, or the cost of removing larger volumes of overburden makes further mining uneconomic.

In most forms of surface mining, heavy equipment, such as earthmovers, first remove the overburden - the soil and rock above the deposit. Next, huge machines, such as dragline excavators, extract the mineral.

Queef There are five main forms of surface mining, detailed below.

Strip mining

"Strip mining" is for pussyholes in wales. It is the practice of mining a seam of mineral by first removing a long strip of overlying soil and cock (the overburden). It is most commonly used to mine coal or tar sand. Strip mining is only practical when the ore body to be excavated is relatively near the surface. This type of mining uses some of the largest machines on earth, including bucket-wheel excavators which can move as much as 12,000 cubic meters of earth per hour.

There are two forms of strip mining. The more common method is "area stripping", which is used on fairly flat terrain, to extract deposits over a large area. As each long strip is excavated, the overburden is placed in the excavation produced by the previous strip.

"Contour stripping" involves removing the overburden above the mineral seam near the outcrop in hilly terrain, where the mineral outcrop usually follows the contour of the land. Contour stripping is often followed by auger mining into the hillside, to remove more of the mineral. This method commonly leaves behind terraces in mountainsides.

Among others, strip mining is used to extract the oil-impregnated sand in the Athabasca Tar Sands in Alberta. It is also common in coal mining. Bucket-wheel excavators are widely used for this purpose, however, they are prone to damage and require many millions of dollars to repair.

I stomp babies!!

I love men

The El Chino mine located near Silver City, New Mexico is an open-pit copper mine.

"Open-pit mining" refers to a method of extracting rock or minerals from the earth from their removal from an open pit or borrow. Although open-pit mining is sometimes mistakenly referred to as "strip mining", the two methods are different (see above).

Mountaintop removal

"Mountaintop removal mining" (MTR) is a destructive form of coal mining that uses three million pounds of explosives per day [1] to blast 600 to 800 feet (240 m) off the top of densely forested Appalachian mountains. The mining waste or "overburden" is dumped by large trucks into mountain streams. MTR involves the mass restructuring of earth in order to reach the coal seam as deep as 1,000 feet (300 m) below the surface. It is used where a coal seam outcrops all the way around a mountain top. All the rock, soil, trees and vegetation above the coal seam are removed and dumped in adjacent lows such as hollows or ravines. Mountaintop removal replaces previously steep forested topography with a monocultural grassland on a relatively level surface. Economic development attempts on reclaimed mine sites include prisons such the Big Sandy Federal Penitentiary in Martin County, Kentucky, small town airports, golf courses such as Twisted Gun in Mingo County, West Virginia and Stonecrest Golf Course in Floyd County, Kentucky, as well as industrial scrubber sludge disposal sites, solid waste landfills, trailer parks, explosive manufacturers, and storage rental lockers.[2]

The technique has been used increasingly in recent years in the Appalachian coal fields of West Virginia, Kentucky, Virginia and Tennessee in the United States. The profound changes in topography and disturbance of pre-existing ecosystems have made mountaintop removal highly controversial.

Advocates of mountaintop removal point out that once the areas are reclaimed as mandated by law, the technique provides premium flat land suitable for many uses in a region where flat land is at a premium. They also maintain that the new growth on reclaimed mountaintop mined areas is better able to support populations of game animals.[3]

Critics contend that mountaintop removal is a disastrous practice that benefits a small number of corporations at the expense of local communities and the environment. A U.S. Environmental Protection Agency (EPA) environmental impact statement finds that streams near valley fills from mountaintop removal contain high levels of minerals in the water and decreased aquatic biodiversity.[4] The statement also estimates that 724 miles (1,165 km) of Appalachian streams were buried by valley fills from 1985 to 2001.[4]

In common with other methods of coal mining, processing the coal mined by mountaintop removal generates waste slurry (also called "coal sludge"), which is usually stored behind a dam on-site. Many coal slurry impoundments in West Virginia exceed 500 million gallons in volume, and some, including the Brushy Fork impoundment in Raleigh County, exceed 7 billion gallons.[5] Such impoundments can be hundreds of feet high and be in close proximity to schools or private residences.[6] The most controversial sludge dam at present sits 400 yards (370 m) above Marsh Fork Elementary School. The sludge pond is permitted to hold 2.8 billion gallons of toxic sludge, and is 21 times larger than the pond which killed 125 people in the Buffalo Creek Flood.[7]

Blasting at a mountaintop removal mine expels coal dust and fly-rock into the air, which can then disturb or settle onto private property nearby. This dust contains sulfur compounds, which corrode structures and tombstones and is a health hazard.[8]

Although MTR sites are usually reclaimed after mining is complete, reclamation has traditionally focused on stabilizing rock and controlling erosion, but not reforesting the area with trees.[9] Quick-growing, non-native grasses, planted to quickly provide vegetation on a site, compete with tree seedlings, and trees have difficulty establishing root systems in compacted backfill.[4] Consequently, biodiversity suffers in a region of the United States with numerous endemic species.[10] Erosion also increases, which can intensify flooding. In the Eastern United States, the Appalachian Regional Reforestation Initiative works to promote the use of trees in mining reclamation.[11]

Dredging

"Dredging" is a method often used to bring up underwater mineral deposits. Although dredging is usually employed to clear or enlarge waterways for boats, it can also recover significant amounts of underwater minerals relatively efficiently and cheaply.

Highwall mining

Highwall mining is another form of surface mining that evolved from auger mining. In highwall mining, the coal seam is penetrated by a continuous miner propelled by a hydraulic Pushbeam Transfer Mechanism (PTM). A typical cycle includes sumping (pushing forward) and shearing (raising or lowering the cutterhead boom to cut the entire height of the coal seam). As the coal recovery cycle continues, the cutterhead is progressively pushed into the coal seam for 20 feet (6.1 m). Then, the Pushbeam Transfer Mechanism (PTM) automatically inserts a 20-foot (6.1 m) long rectangular pushbeam into the center section of the machine between the powerhead and the cutterhead. The pushbeams system can penetrate nearly 1,000 feet (300 m) into the coal seam. Some highwall mining systems use augers enclosed inside the pushbeams that prevent the mined coal from being contaminated by rock debris during the conveyance process. Using a video imaging and/or a gamma detector, the operator can see and guide the continuous miner's progress. Highwall mining can produce thousands of tons of coal in contour-strip operations with narrow benches, previously mined areas, or trench mine applications.

Recovery is much better than augering, but the mapping of areas that have been developed by a highwall miner are not mapped as rigorously as deep mined areas. Very little spoil is displaced in contrast with mountain top removal, however a large amount of capital is required to operate and own a highwall miner.

Mapping of the outcrop as well as core hole data and samples taken during the bench making process are taken into account to best project the panels that the highwall miner will cut. Obstacles that could be potentially damaged by subsidence and the natural contour of the Highwall are taken into account, and a surveyor points the Highwall miner in a line mostly perpendicular to the highwall. Parallel lines represent the panels cut into the mountain (up to 1,000 feet (300 m) deep), because changing the azimuth during mining results in missing a portion of the coal seam. Recently highwall miners have penetrated more than 1050 feet into the coal seam, and today's models are capable of going farther, limited only by the amount of cable on the machine. The maximum depth would be determined by the stress of further penetration and associated power draw.

Environmental and health issues

The large impact of surface mining on the topography, vegetation, and water resources has made it highly controversial.

Surface mining is subject to state and federal reclamation requirements, but adequacy of the requirements is a constant source of contention. Unless reclaimed, surface mining can leave behind large areas of infertile waste rock, as 70% of material excavated is waste.[citation needed]

In the United States, the Surface Mining Control and Reclamation Act of 1977 mandates reclamation of surface coal mines. Reclamation for non-coal mines is regulated by state and local laws, which may vary widely.

Human health

The United Mine Workers of America has spoken against the use of human sewage sludge to reclaim surface mining sites in Appalachia. The UMWA launched its campaign against the use of sludge on mine sites in 1999 after eight UMWA workers became ill from exposure to Class B sludge spread near their workplace.[12]

On August 20, 2004 at 2:30 a.m. a boulder accidentally pushed off an A&G Coal surface mine above the town of Inman, Virginia rolled 649 feet (198 m) down the mountain and into a home. Three-year-old Jeremy Davidson was crushed in his bed while he slept. The Davidson family settled with A&G Coal for $3 million in 2006, and left the region.[13]

Flooding exacerbated by logging operations and coal surface mining, especially mountaintop removal mines has caused damage in Appalachian communities [14] including the communities of Dorothy, Welch, Keystone, Oceana, Davey, Belo and Delbarton, West Virginia. Flash flooding on July 8, 2001 [15] and May 2, 2002 [16] killed eight West Virginians and washed away homes throughout southern West Virginia. Mountaintop removal mining removes all vegetation, and these trees normally absorb up to 75 percent of rainfall in a mature healthy forest, according to the Federal Office of Surface Mining.[17]

The Martin County Sludge Spill was an accident that occurred after midnight on October 11, 2000 when the bottom of a coal sludge impoundment at a surface mine owned by Massey Energy in Martin County, Kentucky, broke into an abandoned underground mine below. The slurry came out of the mine openings, sending an estimated 306 million gallons (1.16 billion liters) of sludge down two tributaries of the Tug Fork River. By morning, Wolf Creek was oozing with the black waste; on Coldwater Fork, a ten-foot (3 m) wide stream became a 100-yard (91 m) expanse of thick sludge. The spill was over five feet deep in places and covered nearby residents' yards. The spill polluted hundreds of miles (300 - 500 km) of the Big Sandy River and its tributaries and the Ohio River. The water supply for over 27,000 residents was contaminated, and all aquatic life in Coldwater Fork and Wolf Creek was killed. The spill was 30 times larger than the Exxon Valdez oil spill (12 million gallons) and one of the worst environmental disasters ever in the southeastern United States, according to the United States Environmental Protection Agency.

Surface mining creates problems for the human health: gases, dust in suspension, noises and vibrations from the machines and explosions, that can create lung or nervous diseases.[citation needed]

References

  1. ^ www.iem.org
  2. ^ http://www.kentuckycoal.org/index.cfm?pageToken=gallery
  3. ^ J.S. Gardner and P Sainato, Mountaintop mining and sustainable development in Appalachia, Mining Engineering, March 2007, p.48-55.
  4. ^ a b c U.S. Environmental Protection Agency (2005-10-25). "Mountaintop Mining/Valley Fills in Appalachia: Final Programmatic Environmental Impact Statement". Retrieved 2006-08-20. Cite error: The named reference "epaPeis" was defined multiple times with different content (see the help page).
  5. ^ Brian Vanneman (2004). "Tearing Up Appalachia". Sierra Club. Retrieved 2006-09-04.
  6. ^ "Marsh Fork Elementary, Massey Energy's Shumate Coal Sludge Impoundment and Goals Coal Prep Plant". Retrieved 2006-07-31.
  7. ^ "West Virginia Division of Culture and History – Buffalo Creek".
  8. ^ Jessica Tzerman (2006-08-03). "Blast Rites". Grist. Retrieved 2006-09-04.
  9. ^ "Appalachian Regional Reforestation Initiative Forest Reclamation Advisory" (PDF). Office of Surface Mining and Reclamation. Retrieved 2007-07-11.
  10. ^ "Biology: Plants, Animals, & Habitats - We live in a hot spot of biodiversity". Apalachicola Region Resources on the Web. Retrieved 2006-09-18.
  11. ^ "Appalachian Regional Reforestation Initiative". Retrieved 2006-09-05.
  12. ^ http://www.unitedmountaindefense.org/2006Defender.pdf
  13. ^ http://www.roanoke.com/news/nrv/wb/81731
  14. ^ "Mucked" documentary film, OMNI Productions, Charleston WV
  15. ^ http://www.wvcoalfield.com/flooding.htm
  16. ^ http://www.wvcoalfield.com/FLOODS2002.htm
  17. ^ http://www.arri.org