Jump to content

Thymus

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 72.29.254.194 (talk) at 20:27, 25 January 2010 (Function). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Thymus
Thymus
The thymus of a full-term fetus, exposed in situ.
Details
Precursorthird branchial pouch
Arteryderived from internal mammary artery, superior thyroid artery, and inferior thyroid artery
Nervevagus
Lymphtracheobronchial, parasternal
Identifiers
MeSHD013950
TA98A13.1.02.001
TA25152
FMA9607
Anatomical terminology

In human anatomy, the thymus is an organ located in the upper anterior portion of the chest cavity just behind the sternum. The main function of the thymus is to provide an area for T cell maturation, and is vital in protecting against autoimmunity.

History

The thymus was known to the Ancient Greeks, and its name comes from the Greek word θυμός (thumos), meaning heart, soul, desire, life - possibly because of its location in the chest, near where emotions are subjectively felt; or else the name comes from the herb thyme (also in Greek θυμός), which became the name for a "warty excrescence", possibly due to its resemblance to a bunch of thyme.[1][2]

Galen was the first to note that the size of the organ changed over the duration of a person's life.[3]

Due to the large numbers of apoptotic lymphocytes, the thymus was originally dismissed as a "lymphocyte graveyard", without functional importance. The importance of the thymus in the immune system was discovered in 1961 by Jacques Miller, by surgically removing the thymus from three day old mice, and observing the subsequent deficiency in a lymphocyte population, subsequently named T cells after the organ of their origin.[4][5] Recently, advances in immunology have allowed the function of the thymus in T cell maturation to be more fully understood.

==Function== Huge penis!

In the two thymic lobes, lymphocyte precursors from the bone-marrow become thymocytes, and subsequently mature into T cells. Once mature, T cells emigrate from the thymus and constitute the peripheral T cell repertoire responsible for directing many facets of the adaptive immune system. Loss of the thymus at an early age through genetic mutation (as in DiGeorge Syndrome[6]) or surgical removal results in severe immunodeficiency and a high susceptibility to infection.[7]

The stock of T-lymphocytes is built up in early life, so the function of the thymus is diminished in adults. It is largely degenerated in elderly adults and is barely identifiable, consisting mostly of fatty tissue, but it continues to function as an endocrine gland important in stimulating the immune system.[8] Involution of the thymus has been linked to loss of immune function in the elderly, susceptibility to infection and to cancer.

The ability of T cells to recognize foreign antigens is mediated by the T cell receptor. The T cell receptor undergoes genetic rearrangement during thymocyte maturation, resulting in each T cell bearing a unique T cell receptor, specific to a limited set of peptide:MHC combinations. The random nature of the genetic rearrangement results in a requirement of central tolerance mechanisms to remove or inactivate those T cells which bear a T cell receptor with the ability to recognise self-peptides.

Iodine, thymus and immunity

Iodine has important actions in the immune system. The high iodide-concentration of thymus suggests an anatomical rationale for this role of iodine in immune system.[9][10][11][12][13][14]

Phases of thymocyte maturation

The generation of T cells expressing distinct T cell receptors occurs within the thymus, and can be conceptually divided into three phases:

  1. A rare population of hematopoietic progenitor cells enter the thymus from the blood, and expands by cell division to generate a large population of immature thymocytes.[15]
  2. Immature thymocytes each make distinct T cell receptors by a process of gene rearrangement. This process is error-prone, and some thymocytes fail to make functional T cell receptors, whereas other thymocytes make T cell receptors that are autoreactive.[16] Growth factors include thymopoietin and thymosin.
  3. Immature thymocytes undergo a process of selection, based on the specificity of their T cell receptors. This involves selection of T cells that are functional (positive selection), and elimination of T cells that are autoreactive (negative selection).
type: functional (positive selection) autoreactive (negative selection)
location: cortex medulla

In order to be positively-selected, thymocytes will have to interact with several cell surface molecules, MHC/HLA, to ensure reactivity and specificity[17].

Positive selection eliminates (apoptosis) weak binding cells and only takes high medium binding cells. (Binding refers to the ability of the T-cell receptors to bind to either MHC class I/II or peptide molecules.)

Negative selection is not 100% complete. Some autoreactive T cells escape thymic censorship, and are released into the circulation.

Additional mechanisms of tolerance active in the periphery exist to silence these cells such as anergy, deletion, and regulatory T cells.

If these peripheral tolerance mechanisms also fail, autoimmunity may arise.

Cells that pass both levels of selection are released into the bloodstream to perform vital immune functions.

Anatomy

anterior view of chest showing location and size of adult thymus

The thymus is of a pinkish-gray color, soft, and lobulated on its surfaces. At birth it is about 5 cm in length, 4 cm in breadth, and about 6 mm in thickness.[18] The organ enlarges during childhood, and atrophies at puberty. Unlike the liver, kidney and heart, for instance, the thymus is at its largest in children. The thymus reaches maximum weight (20 to 37 grams) by the time of puberty. It remains active only until puberty. Then with growing age, it starts to shrink. The thymus gland of older people is scarcely distinguishable from surrounding fatty tissue. As one ages the thymus slowly shrinks, eventually degenerating into tiny islands of fatty tissue. By the age of 75 years, the thymus gland weighs only 6 grams. In children the thymus is grayish-pink in colour and in adults it is yellow.

The thymus will, if examined when its growth is most active, be found to consist of two lateral lobes placed in close contact along the middle line, situated partly in the thorax, partly in the neck, and extending from the fourth costal cartilage upward, as high as the lower border of the thyroid gland. It is covered by the sternum, and by the origins of the sternohyoidei and sternothyreoidei.[18] Below, it rests upon the pericardium, being separated from the aortic arch and great vessels by a layer of fascia. In the neck, it lies on the front and sides of the trachea, behind the sternohyoidei and sternothyreoidei. The two lobes differ in size and may be united or separated.[18]

Development

Embryology

The two main components of the thymus, the lymphoid thymocytes and the thymic epithelial cells, have distinct developmental origins. The thymic epithelium is the first to develop, and appears in the form of two flask-shape endodermal diverticula, which arise, one on either side, from the third branchial pouch (pharyngeal pouch), and extend lateralward and backward into the surrounding mesoderm and neural crest-derived mesenchyme in front of the ventral aorta.

Here they meet and become joined to one another by connective tissue, but there is never any fusion of the thymus tissue proper. The pharyngeal opening of each diverticulum is soon obliterated, but the neck of the flask persists for some time as a cellular cord. By further proliferation of the cells lining the flask, buds of cells are formed, which become surrounded and isolated by the invading mesoderm. Additional portions of thymus tissue are sometimes developed from the fourth branchial pouches.[19]

During the late stages of the development of the thymic epithelium, hematopoietic lymphoid cells from bone-marrow precursors migrate into the thymus and are aggregated to form lymphoid follicles.

The thymus continues to grow between birth and puberty and then begins to atrophy, a process directed by the high levels of circulating sex hormones. Proportional to thymic size, thymic activity (T cell output) is most active before puberty. Upon atrophy, the size and activity are dramatically reduced, and the organ is primarily replaced with fat (a phenomenon known as "organ involution"). The atrophy is due to the increased circulating level of sex hormones, and chemical or physical castration of an adult results in the thymus increasing in size and activity.[20] Patients with the autoimmune disease Myasthenia gravis commonly (70%) are found to have thymic hyperplasia or malignancy.[21] The reason or order of these cirumstances has yet to be determined by medical scientists.

Age Mass
birth about 15 grams;
puberty about 35 grams
twenty-five years 25 grams
sixty years less than 15 grams
seventy years as low as 5 grams

huge penis near the sweaty ball sack

Structure

Histology
Minute structure of thymus.
Micrograph showing a thymic corpuscle (Hassall corpuscle), a characteristic histologic feature of the human thymus. H&E stain.

Each lateral lobe is composed of numerous lobules held together by delicate areolar tissue; the entire organ being enclosed in an investing capsule[22] of a similar but denser structure. The primary lobules vary in size from that of a pin's head to that of a small pea, and are made up of a number of small nodules or follicles.

The follicles are irregular in shape and are more or less fused together, especially toward the interior of the organ. Each follicle is from 1 to 2 mm in diameter and consists of a medullary and a cortical portion[23], and these differ in many essential particulars from each other.

Cortex

The cortical portion is mainly composed of lymphoid cells, supported by a network of finely-branched epithelial reticular cells, which is continuous with a similar network in the medullary portion. This network forms an adventitia to the blood vessels.

The cortex is the location of the earliest events in thymocyte development, where T cell receptor gene rearrangement and positive selection takes place.

Medulla

In the medullary portion, the reticulum is coarser than in the cortex, the lymphoid cells are relatively fewer in number, and there are found peculiar nest-like bodies, the concentric corpuscles of Hassall. These concentric corpuscles are composed of a central mass, consisting of one or more granular cells, and of a capsule formed of epithelioid cells. They are the remains of the epithelial tubes, which grow out from the third branchial pouches of the embryo to form the thymus. Each follicle is surrounded by a vascular plexus, from which vessels pass into the interior, and radiate from the periphery toward the center, forming a second zone just within the margin of the medullary portion. In the center of the medullary portion there are very few vessels, and they are of minute size.

The medulla is the location of the latter events in thymocyte development. Thymocytes that reach the medulla have already successfully undergone T cell receptor gene rearrangement and positive selection, and have been exposed to a limited degree of negative selection. The medulla is specialised to allow thymocytes to undergo additional rounds of negative selection to remove auto-reactive T cells from the mature repertoire. The gene AIRE is expressed in the medulla, and drives the transcription of organ-specific genes such as insulin to allow maturing thymocytes to be exposed to a more complex set of self-antigens than is present in the cortex.

Vasculature

The arteries supplying the thymus are derived from the internal mammary, and from the superior thyroid and inferior thyroids.

The veins end in the left brachiocephalic vein (innominate vein) , and in the thyroid veins.

The nerves are exceedingly minute; they are derived from the vagi and sympathetic nervous system. Branches from the descendens hypoglossi and phrenic reach the investing capsule, but do not penetrate into the substance of the organ.

Cancer

Two primary forms of tumours originate in the thymus.

Tumours originating from the thymic epithelial cells are called thymomas, and are found in about 10-15% of patients with myasthenia gravis.[24] Symptoms are sometimes confused with bronchitis or a strong cough because the tumor presses on the recurrent laryngeal nerve. All thymomas are potentially cancerous, but they can vary a great deal. Some grow very slowly. Others grow rapidly and can spread to surrounding tissues. Treatment of thymomas often requires surgery to remove the entire thymus. Tumours originating from the thymocytes are called thymic lymphomas.[24]

Radiation Induced

People with enlarged thymus glands, particularly children, were treated with intense radiation in the years before 1950. There is an elevated incidence of thyroid cancer and leukemia in treated individuals.[25]

Other animals and second thymus

The thymus is also present in most vertebrates, with similar structure and function as the human thymus. Some animals have multiple secondary (smaller) thymi in the neck; this phenomenon has been reported for mice [26] and also occurs in 5 out of 6 human fetuses.[27] As in humans, the Guinea pig's thymus naturally atrophies as the animal reaches adulthood, but in the athymic hairless guinea pig (which arose from a spontaneous laboratory mutation) possessed no thymic tissue whatsoever, and the organ cavity is replaced with cystic spaces.

When animal thymic tissue is sold in a butcher shop or at a meat counter, thymus is known as sweetbread.

References

  1. ^ Online Etymology Dictionary
  2. ^ Liddell Scott Greek-English Lexicon
  3. ^ Nishino M, Ashiku SK, Kocher ON, Thurer RL, Boiselle PM, Hatabu H (2006). "The thymus: a comprehensive review". Radiographics. 26 (2): 335–48. doi:10.1148/rg.262045213. PMID 16549602.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Miller JF (2002). "The discovery of thymus function and of thymus-derived lymphocytes". Immunol. Rev. 185: 7–14. doi:10.1034/j.1600-065X.2002.18502.x. PMID 12190917.
  5. ^ Miller JF (2004). "Events that led to the discovery of T-cell development and function--a personal recollection". Tissue Antigens. 63 (6): 509–17. doi:10.1111/j.0001-2815.2004.00255.x. PMID 15140026.
  6. ^ Hussain, I., P.H. Win and S. Guduri (February 2, 2006). "DiGeorge Syndrome". eMedicine. Retrieved 2008-09-29 Also believed that this gland and it´s secretions a role in language learning by humans, and that hypothesis supported by the rapid acceptance of the child to learn the language and in particular the proper pronunciation, while unable to master the pronunciation of proper regardless of the degree of mastery of the languages that you learn later in terms of vocabulary, grammar and phrases saying way.. {{cite web}}: Check date values in: |accessdate= (help)CS1 maint: multiple names: authors list (link)
  7. ^ Miller JF. The discovery of thymus function and of thymus-derived lymphocytes. Immunol Rev 185:7-14, 2002. full text
  8. ^ "Thymus". Retrieved 2007-12-03.
  9. ^ Venturi S, Venturi M (2009). "Iodine, thymus, and immunity". Nutrition. 25 (9): 977–9. doi:10.1016/j.nut.2009.06.002. PMID 19647627. {{cite journal}}: Unknown parameter |month= ignored (help)
  10. ^ Venturi S, Venturi A, Cimini D, Arduini C, Venturi M, Guidi A (1993). "A new hypothesis: iodine and gastric cancer". Eur. J. Cancer Prev. 2 (1): 17–23. PMID 8428171. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  11. ^ Marani L, Venturi S, Masala R (1985). "Role of iodine in delayed immune response". Isr. J. Med. Sci. 21 (10): 864. PMID 4077481. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  12. ^ Ma F (2002). "Inhibition of vacuolation toxin activity of Helicobacter pylori by iodine, nitrite and potentiation by sodium chloride, sterigmatocystin and fluoride". Toxicol in Vitro. 16 (5): 531. doi:10.1016/S0887-2333(02)00045-0. PMID 12206820. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  13. ^ Klebanoff S.J. (1967). "Iodination of bacteria: A bacterial mechanism". J Exp Med. 126 (6): 1063–1078. doi:10.1084/jem.126.6.1063. PMC 2138423. PMID 4964565.
  14. ^ "Iodine enhances ig-G-synthesis by human peripheral blood Iyphocytes in vitro". Acta Endocr. 103: 103–210. 1983. {{cite journal}}: Text "+author+Weetman+A.P." ignored (help)
  15. ^ Schwarz BA, Bhandoola A. Trafficking from the bone marrow to the thymus: a prerequisite for thymopoiesis. Immunol Rev 209:47, 2006. full text
  16. ^ Sleckman BP, Lymphocyte antigen receptor gene assembly: multiple layers of regulation. Immunol Res 32:153-8, 2005. full text
  17. ^ Baldwin TA, Hogquist KA, Jameson SC, The fourth way? Harnessing aggressive tendencies in the thymus. “J Immunol.” 173:6515-20, 2004. [1]
  18. ^ a b c Gray, H. (1918). "4c. The Thymus". (bartleby.com) Anatomy of the Human Body. Philadelphia: Lea & Febiger. {{cite book}}: Check |url= value (help)
  19. ^ Swiss embryology (from UL, UB, and UF) qblood/lymphat03
  20. ^ Sutherland JS. Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 2005 15;175(4):2741-53
  21. ^ Kumar, Parveen, Michael Clark (2002). Clinical Medicine 5th edn. Saunders. p. 1222. ISBN 0-702-02606-9.{{cite book}}: CS1 maint: multiple names: authors list (link)
  22. ^ Histology image: 07403loa – Histology Learning System at Boston University
  23. ^ Histology image: 07401loa – Histology Learning System at Boston University
  24. ^ a b Huete-Garin, A. (2005). "Chapter 6: "Mediastinum", Thymic Neoplasm". In J.K.T. Lee, S.S. Sagel, R.J. Stanley and J.P. Heiken (ed.). Computed Body Tomography with MRI Correlation. Philadelphia: Lippincott Williams & Wilkins. pp. 311–324. ISBN 0781745268. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: multiple names: editors list (link)
  25. ^ Shore RE, Woodward E, Hildreth N, et al., Thyroid tumors following thymus irradiation. J Natl Cancer Inst 74:1177-1184, 1985.
  26. ^ Terszowski G et al. (2006) Evidence for a Functional Second Thymus in Mice. Science. 2 March 2006. PMID 16513945
  27. ^ Surprise organ discovered in mice, Nature News, 2 March 2006
  • Millington GWM, Buckingham JC. (1992) Thymic peptides and neuroendocrine immune communication. J Endocrinol 133: 163-168
  • Public domain This article incorporates text in the public domain from page 1273 of the 20th edition of Gray's Anatomy (1918)

Additional images