Tennessine
Tennessine | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation | /ˈtɛnəsiːn/[1] | ||||||||||||||||||||
Appearance | semimetallic (predicted)[2] | ||||||||||||||||||||
Mass number | [294] (data not decisive)[a] | ||||||||||||||||||||
Tennessine in the periodic table | |||||||||||||||||||||
| |||||||||||||||||||||
Atomic number (Z) | 117 | ||||||||||||||||||||
Group | group 17 (halogens) | ||||||||||||||||||||
Period | period 7 | ||||||||||||||||||||
Block | p-block | ||||||||||||||||||||
Electron configuration | [Rn] 5f14 6d10 7s2 7p5 (predicted)[4] | ||||||||||||||||||||
Electrons per shell | 2, 8, 18, 32, 32, 18, 7 (predicted) | ||||||||||||||||||||
Physical properties | |||||||||||||||||||||
Phase at STP | solid (predicted)[4][5] | ||||||||||||||||||||
Melting point | 623–823 K (350–550 °C, 662–1022 °F) (predicted)[4] | ||||||||||||||||||||
Boiling point | 883 K (610 °C, 1130 °F) (predicted)[4] | ||||||||||||||||||||
Density (near r.t.) | 7.1–7.3 g/cm3 (extrapolated)[5] | ||||||||||||||||||||
Atomic properties | |||||||||||||||||||||
Oxidation states | common: (none) (−1), (+5) | ||||||||||||||||||||
Ionization energies | |||||||||||||||||||||
Atomic radius | empirical: 138 pm (predicted)[5] | ||||||||||||||||||||
Covalent radius | 156–157 pm (extrapolated)[5] | ||||||||||||||||||||
Other properties | |||||||||||||||||||||
Natural occurrence | synthetic | ||||||||||||||||||||
CAS Number | 54101-14-3 | ||||||||||||||||||||
History | |||||||||||||||||||||
Naming | after Tennessee region | ||||||||||||||||||||
Discovery | Joint Institute for Nuclear Research, Lawrence Livermore National Laboratory, Vanderbilt University and Oak Ridge National Laboratory (2010) | ||||||||||||||||||||
Isotopes of tennessine | |||||||||||||||||||||
| |||||||||||||||||||||
Ununseptium (Template:Pron-en[9] oon-oon-SEP-tee-əm) is the temporary name of an undiscovered chemical element with the temporary symbol Uus and atomic number 117. It is the only missing element in period 7 of the periodic table. Since it is placed below the halogens it may share qualities similar to astatine or iodine. The first attempt to synthesize this element is currently underway at the Flerov Laboratory of Nuclear Reactions in Dubna, Russia.
History
Naming
The element with Z=117 is historically known as eka-astatine (see 'eka' terminology). The name ununseptium is a systematic element name, used as a placeholder until the element is discovered, the discovery is acknowledged by the IUPAC, and the IUPAC decides on a name. Usually, the name suggested by the discoverer(s) is chosen.
According to current guidelines from IUPAC, the ultimate name for all new elements should end in "-ium", which means the name for element 117 may end in -ium, not -ine, even if ununseptium turns out to be a halogen.[10]
Current experiments
The team at the Flerov laboratory of nuclear reactions has begun an experiment to synthesize element 117 using the reaction[11][12]
- 48
20Ca
+ 249
97Bk
→ The element Ununseptium does not exist.* → The element Ununseptium does not exist. + 31
0n
.
The expected cross-section is of the order of ~2 pb. The expected evaporation residues, 293117 and 294117, are predicted to decay via relatively long decay chains as far as isotopes of dubnium or lawrencium.
-
Calculated decay chains from the parent nuclei 293Uus and 294 Uus[13]
-
Calculated excitation function for the production of the compound nucleus 297117 from the reaction 249Bk( 48Ca,xn) [13]
Future experiments
The team at the GSI in Darmstadt, recently acknowledged as the discoverers of element 112 (see ununbium) have begun experiments aiming towards a synthesis of element 117. The GSI have indicated that if they are unable to acquire any 249Bk from the United States, which is likely given the situation regarding the attempt in Russia, they will study the reaction 244Pu(51V,xn) instead, or possibly 243Am(50Ti,xn).[14]
Isotopes and nuclear properties
Nucleosynthesis
Target-projectile combinations leading to Z=117 compound nuclei
The below table contains various combinations of targets and projectiles which could be used to form compound nuclei with Z=117.
Target | Projectile | CN | Attempt result |
---|---|---|---|
208Pb | 81Br | 289117 | Reaction yet to be attempted |
232Th | 59Co | 291117 | Reaction yet to be attempted |
238U | 55Mn | 293117 | Reaction yet to be attempted |
237Np | 54Cr | 291117 | Reaction yet to be attempted |
244Pu | 51V | 295117 | Reaction yet to be attempted |
243Am | 50Ti | 293117 | Reaction yet to be attempted |
248Cm | 45Sc | 293117 | Reaction yet to be attempted |
249Bk | 48Ca | 297117 | Sucessful reaction |
249Cf | 41K | 290117 | Reaction yet to be attempted |
Theoretical calculations
Evaporation residue cross sections
The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.
DNS = Di-nuclear system; σ = cross section
Target | Projectile | CN | Channel (product) | σmax | Model | Ref |
---|---|---|---|---|---|---|
209Bi | 82Se | 291117 | 1n (290117) | 15 fb | DNS | [15] |
209Bi | 79Se | 288117 | 1n (287117) | 0.2 pb | DNS | [15] |
232Th | 59Co | 291117 | 2n (289117) | 0.1 pb | DNS | [15] |
238U | 55Mn | 293117 | 2-3n (291,290117) | 70 fb | DNS | [15] |
244Pu | 51V | 295117 | 3n (292117) | 0.6 pb | DNS | [15] |
248Cm | 45Sc | 293117 | 4n (289117) | 2.9 pb | DNS | [15] |
246Cm | 45Sc | 291117 | 4n (287117) | 1 pb | DNS | [15] |
249Bk | 48Ca | 297117 | 3n (294117) | 2.1 pb ; 3 pb | DNS | [15][16] |
247Bk | 48Ca | 295117 | 3n (292117) | 0.8, 0.9 pb | DNS | [16][15] |
Decay characteristics
Theoretical calculations in a quantum tunneling model with mass estimates from a macroscopic-microscopic model predict the alpha-decay half-lives of isotopes of the element 117 (namely, 289-303117) to be around 0.1–40 ms.[17][18][19]
Chemical properties
Predicted chemical properties
Certain chemical properties, such as bond lengths, are predicted to differ from what one would expect based on periodic trends from the lighter halogens (because of relativistic effects).[20]
References
- ^ Ritter, Malcolm (June 9, 2016). "Periodic table elements named for Moscow, Japan, Tennessee". Associated Press. Retrieved December 19, 2017.
- ^ Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
- ^ a b c Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ a b c d Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
- ^ a b c d Bonchev, D.; Kamenska, V. (1981). "Predicting the Properties of the 113–120 Transactinide Elements". Journal of Physical Chemistry. 85 (9): 1177–1186. doi:10.1021/j150609a021.
- ^ a b c Chang, Zhiwei; Li, Jiguang; Dong, Chenzhong (2010). "Ionization Potentials, Electron Affinities, Resonance Excitation Energies, Oscillator Strengths, And Ionic Radii of Element Uus (Z = 117) and Astatine". J. Phys. Chem. A. 2010 (114): 13388–94. Bibcode:2010JPCA..11413388C. doi:10.1021/jp107411s.
- ^ Khuyagbaatar, J.; Yakushev, A.; Düllmann, Ch. E.; et al. (2014). "48Ca+249Bk Fusion Reaction Leading to Element Z=117: Long-Lived α-Decaying 270Db and Discovery of 266Lr". Physical Review Letters. 112 (17): 172501. Bibcode:2014PhRvL.112q2501K. doi:10.1103/PhysRevLett.112.172501. PMID 24836239.
- ^ Oganessian, Yu. Ts.; et al. (2013). "Experimental studies of the 249Bk + 48Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope 277Mt". Physical Review C. 87 (5): 054621. Bibcode:2013PhRvC..87e4621O. doi:10.1103/PhysRevC.87.054621.
- ^ J. Chatt (1979). "Recommendations for the Naming of Elements of Atomic Numbers Greater than 100". Pure Appl. Chem. 51: 381–384. doi:10.1351/pac197951020381.
- ^ Koppenol, W. H. (2002). "Naming of new elements(IUPAC Recommendations 2002)" (PDF). Pure and Applied Chemistry. 74: 787. doi:10.1351/pac200274050787.
- ^ New chemical element to be synthesized in Russia
- ^ Flerov Lab.
- ^ a b sagaidak. "Experiment setting on synthesis of superheavy nuclei in fusion-evaporation reactions. Preparation to synthesis of new element with Z=117" (PDF). Retrieved 2009-07-07.
- ^ Toward element 117
- ^ a b c d e f g h i Zhao-Qing, Feng (2007). "Possible Way to Synthesize Superheavy Element Z = 117". Chinese Physics Letters. 24: 2551. doi:10.1088/0256-307X/24/9/024.
- ^ a b Feng, Z (2009). "Production of heavy and superheavy nuclei in massive fusion reactions". Nuclear Physics A. 816: 33. doi:10.1016/j.nuclphysa.2008.11.003.
- ^ C. Samanta, P. Roy Chowdhury and D.N. Basu (2007). "Predictions of alpha decay half lives of heavy and superheavy elements". Nucl. Phys. A. 789: 142. doi:10.1016/j.nuclphysa.2007.04.001.
- ^ P. Roy Chowdhury, C. Samanta, and D. N. Basu (2008). "Search for long lived heaviest nuclei beyond the valley of stability". Phys. Rev. C. 77: 044603. doi:10.1103/PhysRevC.77.044603.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ P. Roy Chowdhury, C. Samanta, and D. N. Basu (2008). "Nuclear half-lives for α -radioactivity of elements with 100 ≤ Z ≤ 130". At. Data & Nucl. Data Tables. 94: 781–806. doi:10.1016/j.adt.2008.01.003.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Trond Saue. "Principles and Applications of Relativistic Molecular Calculations" (PDF)., page 76
Cite error: There are <ref group=lower-alpha>
tags or {{efn}}
templates on this page, but the references will not show without a {{reflist|group=lower-alpha}}
template or {{notelist}}
template (see the help page).