Rocket propellant
Rocket propellant is mass that is stored in some form of propellant tank, prior to being used as the propulsive mass that is ejected from a rocket engine in the form of a fluid jet to produce thrust. A fuel propellant is often burned with an oxidizer propellant to produce large volumes of very hot gas. These gases expand and push on a nozzle, which accelerates them until they rush out of the back of the rocket at extremely high speed, making thrust. Sometimes the propellant is not burned, but can be externally heated for more performance. For smaller attitude control thrusters, a compressed gas escapes the spacecraft through a propelling nozzle.
Chemical rocket propellants are most commonly used, which undergo exothermic chemical reactions which produce hot gas which is used by a rocket for propulsive purposes.
In ion propulsion, the propellant is made of electrically charged atoms, which are magnetically pushed out of the back of the spacecraft. Magnetically accelerated ion drives are not usually considered to be rockets however, but a similar class of thrusters use electrical heating and magnetic nozzles.
Overview
Rockets create thrust by expelling mass backwards in a high speed jet (see Newton's Third Law). Chemical rockets, the subject of this article, create thrust by reacting propellants within a combustion chamber into a very hot gas at high pressure, which is then expanded and accelerated by passage through a nozzle at the rear of the rocket. The amount of the resulting forward force, known as thrust, that is produced is the mass flow rate of the propellants multiplied by their exhaust velocity (relative to the rocket), as specified by Newton's third law of motion. Thrust is therefore the equal and opposite reaction that moves the rocket, and not by interaction of the exhaust stream with air around the rocket. Equivalently, one can think of a rocket being accelerated upwards by the pressure of the combusting gases against the combustion chamber and nozzle. This operational principle stands in contrast to the commonly held assumption that a rocket "pushes" against the air behind or below it. Rockets in fact perform better in space (where there is nothing behind or beneath them to push against), because atmospheric pressure limits how much the nozzle can expand the rocket exhaust (decreasing its pressure and increasing its velocity) without causing flow separation (intrusion of the atmosphere at one side or another at the nozzle skirts). This intrusion causes a decrease in the effective size of the nozzle and rapid, irregular changes in thrust direction as well.
The maximum velocity that a rocket can attain in the absence of any external forces is primarily a function of its mass ratio and its exhaust velocity. The relationship is described by the rocket equation: . The mass ratio is just a way to express what proportion of the rocket is propellant (fuel/oxidizer combination) prior to engine ignition. Typically, a single rocket stage might have a mass fraction of 90% propellant,10% structure, which is a mass ratio of 1/(1/0.9) = 10. The impulse delivered by the motor to the rocket vehicle per weight of fuel consumed is often reported as the rocket propellant's specific impulse. A propellant with a higher specific impulse is said to be more efficient because more thrust is produced while consuming a given amount of propellant.
Lower stages will usually use high-density (low volume) propellants because of their lighter tankage to propellant weight ratios and because higher performance propellants require higher expansion ratios for maximum performance than can be attained in atmosphere. Thus, the Apollo-Saturn V first stage used kerosene-liquid oxygen rather than the liquid hydrogen-liquid oxygen used on its upper stages Similarly, the Space Shuttle uses high-thrust, high-density SRBs for its lift-off with the liquid hydrogen-liquid oxygen SSMEs used partly for lift-off but primarily for orbital insertion.
Chemical propellants
There are three main types of propellants: solid, liquid, and hybrid.
Liquid propellants
History
Though the earliest rocket theorists proposed liquid hydrogen and liquid oxygen as propellants[1], the first liquid-fuelled rocket, launched by Robert Goddard on March 16, 1926, used gasoline and liquid oxygen. Liquid hydrogen was first used by the engines designed by Pratt and Whitney for the Lockheed CL-400 Suntan reconnaissance aircraft in the mid-1950s. In the mid-1960s, the Centaur and Saturn upper stages were both using liquid hydrogen and liquid oxygen.
The highest specific impulse chemistry ever test-fired in a rocket engine was lithium and fluorine, with hydrogen added to improve the exhaust thermodynamics (making this a tripropellant)[2]. The combination delivered 542 seconds (5.32 kN·s/kg, 5320 m/s) specific impulse in a vacuum. The impracticality of this chemistry highlights why exotic propellants are not actually used: to make all three components liquids, the hydrogen must be kept below -252 °C (just 21 K) and the lithium must be kept above 180 °C (453 K). Lithium and fluorine are both extremely corrosive, liquid lithium ignites on contact with air, fluorine ignites on contact with most fuels, and hydrogen, while not hypergolic, is an explosive hazard. Fluorine and the hydrogen fluoride (HF) in the exhaust are very toxic, which damages the environment, makes work around the launch pad difficult, and makes getting a launch license that much more difficult. The rocket exhaust is also ionized, which would interfere with radio communication with the rocket.
Current Types
The most common liquid propellants in use today:
- LOX and kerosene (RP-1). Used for the lower stages of most Russian and Chinese boosters, the first stages of the Saturn V and Atlas V, and all stages of the developmental Falcon 1 and Falcon 9. Very similar to Robert Goddard's first rocket. This combination is widely regarded as the most practical for civilian orbital launchers.
- LOX and liquid hydrogen, used in the Space Shuttle, the Centaur upper stage, Saturn V upper stages, the newer Delta IV rocket, the H-IIA rocket, and most stages of the European Ariane rockets.
- Nitrogen tetroxide (N2O4) and hydrazine (N2H4), MMH, or UDMH. Used in military, orbital and deep space rockets, because both liquids are storable for long periods at reasonable temperatures and pressures. N2O4/UDMH is the main fuel for the Proton rocket. This combination is hypergolic, making for attractively simple ignition sequences. The major inconvenience is that these propellants are highly toxic, hence they require careful handling.
- Monopropellants such as hydrogen peroxide, hydrazine and nitrous oxide see some use in research work, but less so than bipropellants which usually give better performance.
Advantages
Liquid fueled rockets have better specific impulse than solid rockets and are capable of being throttled, shut down, and restarted. Only the combustion chamber of a liquid fueled rocket needs to withstand combustion pressures and temperatures. On vehicles employing turbopumps, the fuel tanks carry very much less pressure and thus can be built far more lightly, permitting a larger mass ratio. For these reasons, most orbital launch vehicles and all first- and second-generation ICBMs use liquid fuels for most of their velocity gain.
The primary performance advantage of liquid propellants is the oxidizer. Several practical liquid oxidizers (liquid oxygen, nitrogen tetroxide, and hydrogen peroxide) are available which have much better specific impulse than ammonium perchlorate when paired with comparable fuels.
Most liquid propellants are also cheaper than solid propellants. For orbital launchers, the cost savings do not, and historically have not mattered; the cost of fuel is a very small portion of the overall cost of the rocket, even in the case of solid fuel.
Disadvantages
The main difficulties with liquid propellants are also with the oxidizers. These are generally at least moderately difficult to store and handle due to their high reactivity with common materials, may have extreme toxicity (nitric acids), moderately cryogenic (liquid oxygen), or both (liquid fluorine, FLOX- a fluorine/LOX mix). Several exotic oxidizers have been proposed: liquid ozone (O3), ClF3, and ClF5, all of which are unstable, energetic, and toxic.
Liquid fuelled rockets also require potentially troublesome valves and seals and thermally stressed combustion chambers, which increase the cost of the rocket. Many employ specially designed turbopumps which raise the cost enormously due to difficult fluid flow patterns that exist within the casings.
Gas propellants
A gas propellant usually involves some sort of compressed gas. However, due to the low density and high weight of the pressure vessel, gases see little current use, but are sometimes used for attitude jets, particularly with inert propellants.
GOX was used as one of the propellant for the Buran program for the orbital manoeuvring system.
Hybrid propellants
A hybrid rocket usually has a solid fuel and a liquid or gas oxidizer. The fluid oxidizer can make it possible to throttle and restart the motor just like a liquid fuelled rocket. Hybrid rockets are also cleaner than solid rockets because practical high-performance solid-phase oxidizers all contain chlorine, versus the more benign liquid oxygen or nitrous oxide used in hybrids. Because just one propellant is a fluid, hybrids are simpler than liquid rockets.
Hybrid motors suffer two major drawbacks. The first, shared with solid rocket motors, is that the casing around the fuel grain must be built to withstand full combustion pressure and often extreme temperatures as well. However, modern composite structures handle this problem well, and when used with nitrous oxide or hydrogen peroxide relatively small percentage of fuel is needed anyway, so the combustion chamber is not especially large.
The primary remaining difficulty with hybrids is with mixing the propellants during the combustion process. In solid propellants, the oxidizer and fuel are mixed in a factory in carefully controlled conditions. Liquid propellants are generally mixed by the injector at the top of the combustion chamber, which directs many small swift-moving streams of fuel and oxidizer into one another. Liquid fuelled rocket injector design has been studied at great length and still resists reliable performance prediction. In a hybrid motor, the mixing happens at the melting or evaporating surface of the fuel. The mixing is not a well-controlled process and generally quite a lot of propellant is left unburned[3], which limits the efficiency and thus the exhaust velocity of the motor. Additionally, as the burn continues, the hole down the center of the grain (the 'port') widens and the mixture ratio tends to become more oxidiser rich.
There has been much less development of hybrid motors than solid and liquid motors. For military use, ease of handling and maintenance have driven the use of solid rockets. For orbital work, liquid fuels are more efficient than hybrids and most development has concentrated there. There has recently been an increase in hybrid motor development for nonmilitary suborbital work:
- The Reaction Research Society, although known primarily for their work with liquid rocket propulsion, has a long history of research and development with hybrid rocket propulsion.
- Several universities have recently experimented with hybrid rockets. Brigham Young University, the University of Utah and Utah State University launched a student-designed rocket called Unity IV in 1995 which burned the solid fuel hydroxy-terminated polybutadiene (HTPB) with an oxidizer of gaseous oxygen, and in 2003 launched a larger version which burned HTPB with nitrous oxide. Stanford University researches nitrous-oxide/paraffin hybrid motors.
- The Rochester Institute of Technology is currently creating a HTPB hybrid rocket to launch small payloads into space and to several near Earth objects. Its first launch is scheduled for Summer 2007. http://meteor.rit.edu
- Scaled Composites SpaceShipOne, the first private manned spacecraft, is powered by a hybrid rocket burning HTPB with nitrous oxide. The hybrid rocket engine was manufactured by SpaceDev. SpaceDev partially based its motors on experimental data collected from the testing of AMROC's (American Rocket Company) motors at NASA's Stennis Space Center's E1 test stand. Motors ranging from as small as 1000 lbf (4.4 kN) to as large as 250,000 lbf (1.1 MN) thrust were successfully tested. SpaceDev purchased AMROCs assets after the company was shut down for lack of funding.
Inert propellants
Some rocket designs have their propellants obtain their energy from non chemical or even external sources. For example water rockets use the compressed gas, typically air, to force the water out of the rocket.
Solar thermal rockets and Nuclear thermal rockets typically propose to use liquid hydrogen for an Isp (Specific Impulse) of around 600-900 seconds, or in some cases water that is exhausted as steam for an Isp of about 190 seconds.
Additionally for low performance requirements such as attitude jets, inert gases such as nitrogen have been employed.
Mixture ratio
The theoretical exhaust velocity of a given propellant chemistry is a function of the energy released per unit of propellant mass (specific energy). Unburned fuel or oxidizer drags down the specific energy. Surprisingly, most rockets run fuel-rich.
The usual explanation for fuel-rich mixtures is that fuel-rich mixtures have lower molecular weight exhaust, which by reducing supposedly increases the ratio which is approximately equal to the theoretical exhaust velocity. This explanation, though found in some textbooks, is wrong. Fuel-rich mixtures actually have lower theoretical exhaust velocities, because decreases as fast or faster than .
The nozzle of the rocket converts the thermal energy of the propellants into directed kinetic energy. This conversion happens in a short time, on the order of one millisecond. During the conversion, energy must transfer very quickly from the rotational and vibrational states of the exhaust molecules into translation. Molecules with fewer atoms (like CO and H2) store less energy in vibration and rotation than molecules with more atoms (like CO2 and H2O). These smaller molecules transfer more of their rotational and vibrational energy to translation energy than larger molecules, and the resulting improvement in nozzle efficiency is large enough that real rocket engines improve their actual exhaust velocity by running rich mixtures with somewhat lower theoretical exhaust velocities.
The effect of exhaust molecular weight on nozzle efficiency is most important for nozzles operating near sea level. High expansion rockets operating in a vacuum see a much smaller effect, and so are run less rich. The Saturn-II stage (a LOX/LH2 rocket) varied its mixture ratio during flight to optimize performance.
LOX/hydrocarbon rockets are run only somewhat rich (O/F mass ratio of 3 rather than stoichiometric of 3.4 to 4), because the energy release per unit mass drops off quickly as the mixture ratio deviates from stoichiometric. LOX/LH2 rockets are run very rich (O/F mass ratio of 4 rather than stoichiometric 8) because hydrogen is so light that the energy release per unit mass of propellant drops very slowly with extra hydrogen. In fact, LOX/LH2 rockets are generally limited in how rich they run by the performance penalty of the mass of the extra hydrogen tankage, rather than the mass of the hydrogen itself.
Another reason for running rich is that off-stoichiometric mixtures burn cooler than stoichiometric mixtures, which makes engine cooling easier. And as most engines are made of metal or carbon, hot oxidizer-rich exhaust is extremely corrosive, where fuel-rich exhaust is less so. American engines have all been fuel-rich. Some Soviet engines have been oxidizer-rich.
Additionally, there is a difference between mixture ratios for optimum Isp and optimum thrust. During launch, shortly after takeoff, high thrust is at a premium. This can be achieved at some temporary reduction of Isp by increasing the oxidiser ratio initially, and then transitioning to more fuel-rich mixtures. Since engine size is typically scaled for takeoff thrust this permits reduction of the weight of rocket engine, pipes and pumps and the extra propellant use can be more than compensated by increases of acceleration towards the end of the burn by having a reduced dry mass.
Propellant density
Although liquid hydrogen gives a high Isp, its low density is a significant disadvantage: hydrogen occupies about 7x more volume per kilogram than dense fuels such as kerosene. This not only penalises the tankage, but also the pipes and fuel pumps leading from the tank, which need to be 7x bigger and heavier. (The oxidiser side of the engine and tankage is of course unaffected.) This makes the vehicle's dry mass much higher, so the use of liquid hydrogen is not such a big win as might be expected. Indeed, some dense hydrocarbon/LOX propellant combinations have higher performance when the dry mass penalties are included.
Due to lower Isp, dense propellant launch vehicles have a higher takeoff mass, but this does not mean a proportionately high cost; on the contrary, the vehicle may well end up cheaper. Liquid hydrogen is quite an expensive fuel to produce and store, and causes many practical difficulties with design and manufacture of the vehicle.
Because of the higher overall weight, a dense-fuelled launch vehicle necessarily requires higher takeoff thrust, but it carries this thrust capability all the way to orbit. This, in combination with the better thrust/weight ratios, means that dense-fuelled vehicles reach orbit earlier, thereby minimizing losses due to gravity drag. Thus, the effective delta-v requirement for these vehicles are reduced.
However, liquid hydrogen does give clear advantages when the overall mass needs to be minimised; for example the Saturn V vehicle used it on the upper stages; this reduced weight meant that the dense-fuelled first stage could be made significantly smaller, saving quite a lot of money.
References
- ^ Clark, John D. (1972). Ignition! An Informal History of Liquid Rocket Propellants. Rutgers University Press. p. 3. ISBN 0813507251.
- ^ ARBIT, H. A., CLAPP, S. D., DICKERSON, R. A., NAGAI, C. K., Combustion characteristics of the fluorine-lithium/hydrogen tripropellant combination. AMERICAN INST OF AERONAUTICS AND ASTRONAUTICS, PROPULSION JOINT SPECIALIST CONFERENCE, 4TH, CLEVELAND, OHIO, Jun 10-14, 1968.
- ^ Clark, Chapter 12
See also
- ALICE (propellant)
- Timeline of hydrogen technologies
- Category: Rocket fuels
- Comparison: Aviation fuel
- Nuclear propulsion
- Ion thruster
External links
- NASA page on propellants
- Rocket Propellants (from Rocket & Space Technology)
- History of solid rocket fuels
- Detailed list of rocket fuels, practical and theoretical
- Rocket Man Short essay by S. Abbas Raza about development of solid rocket fuel at 3 Quarks Daily