Jump to content

Talk:Linear canonical transformation

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Oscarruitt (talk | contribs) at 23:44, 13 September 2010. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

WikiProject iconMathematics B‑class Mid‑priority
WikiProject iconThis article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
BThis article has been rated as B-class on Wikipedia's content assessment scale.
MidThis article has been rated as Mid-priority on the project's priority scale.
WikiProject iconPhysics C‑class Mid‑importance
WikiProject iconThis article is within the scope of WikiProject Physics, a collaborative effort to improve the coverage of Physics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
CThis article has been rated as C-class on Wikipedia's content assessment scale.
MidThis article has been rated as Mid-importance on the project's importance scale.

I have corrected two simple details:

Use of i = sqrt(-1) is better than 'j'. i is used in Mathematics instead of j
In matrix for fourier transform the minus sign was wrong in the upper value -1. It's 1.
In the applications section there are so many i's already, and the figures use i as subscripts, so that they should be redone without the i. Without changing figure j is better. In any event, or must appear in the text. Either i or j is acceptable, but they must be defined in the text.--Rmoba (talk) 20:39, 1 August 2009 (UTC)[reply]

user cems2 says: I beleive the formula used for the spherical lens is wrong. specifically the x in the exponent numerator I think should be a constant, probably unity. as it stands the formula is not symmetric in x and y. —Preceding unsigned comment added by 192.12.184.2 (talk) 22:11, 21 April 2009 (UTC)[reply]

Correct. The x should be the k defined in the previous section. I have corrected this - jhealy 14:05 (GMT), May 20, 2009

I have two issues with the article as is, both related to the equation

  when b ≠ 0,
when b = 0.

First, when I do a search of articles on the LCT, most use a kernel that does not have the factor of that occurs in the kernel here. This difference is a bit like the choice of kernel for the Fourier transform, where some authors put the in the exponent of the kernel, and some put it as a constant outside the exponential. (For my purposes, the form here is better! But the majority of the literature seems to have the other form.)

Second, I think that there is a factor of missing from the kernel. It should be

  when b ≠ 0,

If anyone is following this page, please check that this is correct --- I'm reluctant to make a change without confirmation. PiperArrow123 July 19, 2010


In the equation for Electromagnetic Wave, how does lambda z get in the denominator in front? I think the previous poster might be right. In the Equation for Spherical Lens, there is no integral. At best, this is confusing; at worst, wrong. In the graphic for Satellite Antenna (which should have another name such as Parabolic Antenna since they are used in many applications besides satellite communications), the figure is confusing. It is hard to see the correct perspective, and the labelled quantity R does not in fact indicate the "disk" diameter ("dish" diameter would be a better term).