Jump to content

Talk:Carnot's theorem (thermodynamics)

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Netheril96 (talk | contribs) at 05:03, 3 October 2010. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

WikiProject iconPhysics Start‑class Mid‑importance
WikiProject iconThis article is within the scope of WikiProject Physics, a collaborative effort to improve the coverage of Physics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
MidThis article has been rated as Mid-importance on the project's importance scale.

Modifications

This article is about to be greatly modified by me because of significant errors.

  1. The Carnot theorem is a product, rather than a stepstone towards establishment, of the second law.I plan to add a section proving it with second law in a few days.
  2. Modern engines are not operating between two reservors whose temperatures are constant, let alone performing Carnot cycles.So the statement in section Description "Carnot's theorem sets essential limitations on the yield of a cyclic heat engine such as steam engines or internal combustion engines, which operate on the Carnot cycle. " are actually wrong.In addition, the section Example is misleading because it oversimplifies the problem.The model of inner combustion engines are mostly Diesel cycle in which the temperatures are varying.So I delete the entire Example section.Anyone is welcome to write another example,but don't refer to the REAL ENGINES because they almost never meet the condition of "two reservoirs".
  3. Also planning to write a section clarifying the distinction between Carnot engine and Carnot cycle.