Antilinear map
Appearance
In mathematics, a mapping f : V → W from a complex vector space to another is said to be antilinear (or conjugate-linear or semilinear, though the latter term is more general) if
for all a, b in C and all x, y in V, where and are the complex conjugates of a and b respectively. The composition of two antilinear maps is complex-linear.
An antilinear map may be equivalently described in terms of the linear map to the complex conjugate vector space .
Antilinear maps occur in quantum mechanics in the study of time reversal.
References
- Horn and Johnson, Matrix Analysis, Cambridge University Press, 1985. ISBN 0-521-38632-2. (antilinear maps are discussed in section 4.6).
- Budinich, P. and Trautman, A. The Spinorial Chessboard. Spinger-Verlag, 1988. ISBN 0-387-19078-3. (antilinear maps are discussed in section 3.3).